石化业

  • Pressure gauge psi meter in pipe and valves of water, oil and gas system industry

    使用扩增实境和人工智慧进行仪表测量

    運用META-aivi快速進行設備儀表數值監控,改善人工抄寫的失誤率及低效,一舉提升儀表數據數位化。

  • complex plastic parts aligned in a bin

    塑胶零件料箱取放

    所罗门屡获殊荣的AccuPick 3D智能取放系统,融合了3D机器视觉和深度学习的创新取放技术,让机器人具有类似人的视觉与大脑一样的思考能力,显著提高机器人执行的精确力度。

  • META-aivi SOP智能工安巡检

    在石化工厂的环境中,充满许多大型化学槽车,其专门承载危险性较高的化学液体及气体,以提供大型工厂使用。然而,由于化学品危险性高,装卸过程中如有任何一个环节出错,恐导致大量化学品泄漏,造成可能的财物损失、人员安全问题以及环境污染等严重工业灾害。故如何落实人员正确的操作流程与减少人为错误,是工厂安全的关键之一。

  • 压花石膏板瑕疵检测解决方案

    石膏板出厂前,瑕疵情形皆须确实检出。然而,由于压花石膏板的外观特性,瑕疵在复杂背景中模糊,无法以AOI及人眼确实辨识。使用所罗门 SolVision AI影像平台技术,撷取板材上的脏痕、过大压花图案以及压花不清等瑕疵,可确实检出并定位板材上的瑕疵,具体提升石膏板板材的质量与良率。

  • 快速辨识轮胎内胎印刷编码

    轮胎在制程的环节经历许多高压、高负荷与高温差的工序,使内胎表面字迹模糊且刷色深浅不齐,影响内胎编码的辨识度,不利于人工辨识与传统AOI检测。利用SolVision工具,针对轮胎内胎编码的数字与形状进行拍摄,进行AI模型训练,能成功辨识,有效改善编码辨识的正确率。

  • 快速精準辨識多種橡膠射出成型之瑕疵

    精准辨识多种橡胶射出成型瑕疵

    橡胶射出成形采用AOI检测塑料缺陷时,由于瑕疵种类及位置多变,易遇橡胶射出瑕疵样品不足使得瑕疵定性定量困难,检测精准度不足。利用SolVision AI瑕疵检测,针对橡胶射出成品瑕疵形状与颜色建立数据库,AI学习可后辨识种类及位置多变的瑕疵。有效解决橡胶射出成品瑕疵不固定的检测问题。

  • 塑胶扣具瑕疵检测解决方案

    射出成型的扣具生产上最为常见的瑕疵为脱模剂油污、白点、毛边及残屑,其中属油污瑕疵最难检出。结合SolVision AI影像平台工具,分别针对各类表面瑕疵型态执行深度学习,训练完成的AI模型即可实时检出射出成型时产生油污与在内的各类瑕疵。