A Man Fixing a Laptop

SolVision成功案例

筆電組裝零件缺漏與瑕疵檢測

減少組件裝配程序缺漏

裝配完整度影響最終筆電的品質

筆電產品零件進入組合與包裝程序後,利用人工方式進行配套零件的裝配,在執行上下裝殼與垂直螺絲組裝等工序時,若有零件缺漏將直接影響最終產品品質,進入各通路販售後有損公司名譽。

組裝程序導入自動化,減少產品疏漏

在組裝程序中偶有人為疏失,導致產品螺絲未完全鎖緊或配件有接縫瑕疵等情況。針對此種重複性高之組裝缺陷檢測,導入自動化將快速改善產品疏漏問題,更提高人力配置效能。

導入SolVision檢測,提高產品良率及穩定性

應用所羅門 SolVision的Segmentation技術,針對螺絲與其他裝配位置進行影像定位,再進行初步辨識裝配卡榫程度並分類,進行AI模型的訓練,即可快速辨識電子零件之組裝完整度,而隨著學習的影像件數增加,亦能持續優化其檢測效力,有效提高產品的品質良率。

組裝瑕疵檢測案例

卡榫及螺絲完整

Detecting Faulty and Missing Laptop Components
Golden Sample

卡榫未對準

Detecting Faulty and Missing Laptop Components
Misaligned Latch

螺絲缺件

Detecting Faulty and Missing Laptop Components
Missing Component
相關文章
  • 醫療器材品質控管:安全針頭組裝

    安全針頭為透明或白色的塑膠件,其材質與紋路使得辨識不易,以人眼或AOI方法皆容易造成誤判,導致組裝錯誤卻無法有效檢出。所羅門結合機器視覺與人工智慧,使用SolVision工具,針對白色與透明塑膠件的各種紋路與形狀做AI訓練,有效檢出塑膠件的組裝錯誤,同時提高缺陷檢測的效率。
  • 細胞病變辨識及分類解決方案

    切片顯微影像中細胞的外觀不固定,細胞病變發生的位置、型態也十分隨機,導致每位醫師對於癌細胞的判斷及圈選標準不盡一致,更無法透過傳統光學檢測以撰寫邏輯方式判斷癌細胞的型態。資料擴增結合AI深度學習技術可以更快速準確地判讀細胞特徵!
  • black and white labeled box

    自動化導線架品質檢測

    導線架表面的各類瑕疵,包含邊緣毛邊、黑點雜質、刮痕等。若使用傳統的AOI檢測,當檢測背景與瑕疵較為相近時,容易發生漏檢的情形。使用SolVision AI瑕疵檢測工具進行學習,以擴增功能增加AI學習範圍,能有效檢測出各類導線架瑕疵,在雜亂或複雜背景中,也能精確辨識有很好的辨識效果。
  • 飲品包裝印刷資訊品質檢測及溯源資訊存留解決方案

    運用SolVision AI影像平台的Instance Segmentation技術,以瓶蓋側文字及條碼影像樣本訓練AI模型並執行光學字元辨識(OCR),即可於高速生產的飲品產線中精準辨識外包裝上的產品資訊,除檢出印刷不良的產品外,亦大幅強化產線溯源管理及紀錄存留的效率。