半導體業

  • META-aivi 智能廠務管理

    導入META-aivi智能廠務巡檢系統,利用所羅門先進的機器視覺與人工智慧執行光學字元辨識(Optical Character Recognition, OCR),以各式字樣的形狀、號碼等影像樣本訓練AI模型,訓練完成的AI模型即可透過鏡頭偵測機台上的數據,自動且即時地將AI判別的數值轉為數位化資訊,並傳送至雲端建立巡檢報表,讓管理者可以便捷的透過行動裝置,一手掌握工廠巡檢狀況。
  • 球柵陣列封裝假銲瑕疵檢測解決方案

    運用SolVision AI影像平台的Instance Segmentation技術,將X光影像中錫球重疊的假銲瑕疵予以標註並藉以執行AI模型的深度學習。經訓練後的AI即可在具背景雜訊、無明顯影像邊緣的條件下,將假銲瑕疵精準檢出。
  • 晶片收納(In-Tray)跳料檢測解決方案

    晶片於晶盤中跳料的情形係屬隨機,所致的瑕疵型態多樣且難以預測瑕疵所產生的位置。運用SolVision AI影像平台技術,以具疊料、空料、歪斜錯置、反轉等瑕疵的影像樣本訓練AI模型,AI訓練完成後即可輕易且迅速地辨識並標註晶盤上產生收納異常的位置。
  • 封裝晶片邊緣微裂瑕疵檢測解決方案

    由於晶粒邊緣崩裂瑕疵出現的位置及型態不固定,以致傳統光學檢測無法精準地將瑕疵檢出,影響整體產品良率。運用SolVision AI影像技術,將影像樣本中的瑕疵特徵予以標註,完成訓練的AI模型即可自動檢出並標註晶粒邊緣崩裂瑕疵的位置,大幅降低晶片在後續封裝製程中斷裂的風險。
  • a group of square objects

    晶粒邊緣崩裂檢測解決方案

    由於晶粒邊緣崩裂瑕疵出現的位置及型態不固定,以致傳統光學檢測無法精準地將瑕疵檢出,影響整體產品良率。運用SolVision AI影像技術,將影像樣本中的瑕疵特徵予以標註,完成訓練的AI模型即可自動檢出並標註晶粒邊緣崩裂瑕疵的位置,大幅降低晶片在後續封裝製程中斷裂的風險。
  • 晶圓切割刀體外觀品質控管解決方案

    晶圓切割係半導體及光電業界非常重要的製程,若無法在切割製程中維持高良率、高效率並保有晶片特性,將大幅影響整體產能。晶圓切割刀的品質控管主要透過外觀瑕疵的檢測,常見的外觀瑕疵包括刀體上的不規則紋路、多鑽等情形。由於有環狀條紋,形成複雜影像背景,嚴重影響機器視覺對於瑕疵的偵測。