A Man Fixing a Laptop

SolVision成功案例

筆電組裝零件缺漏與瑕疵檢測

減少組件裝配程序缺漏

裝配完整度影響最終筆電的品質

筆電產品零件進入組合與包裝程序後,利用人工方式進行配套零件的裝配,在執行上下裝殼與垂直螺絲組裝等工序時,若有零件缺漏將直接影響最終產品品質,進入各通路販售後有損公司名譽。

組裝程序導入自動化,減少產品疏漏

在組裝程序中偶有人為疏失,導致產品螺絲未完全鎖緊或配件有接縫瑕疵等情況。針對此種重複性高之組裝缺陷檢測,導入自動化將快速改善產品疏漏問題,更提高人力配置效能。

導入SolVision檢測,提高產品良率及穩定性

應用所羅門 SolVision的Segmentation技術,針對螺絲與其他裝配位置進行影像定位,再進行初步辨識裝配卡榫程度並分類,進行AI模型的訓練,即可快速辨識電子零件之組裝完整度,而隨著學習的影像件數增加,亦能持續優化其檢測效力,有效提高產品的品質良率。

組裝瑕疵檢測案例

卡榫及螺絲完整

Detecting Faulty and Missing Laptop Components
Golden Sample

卡榫未對準

Detecting Faulty and Missing Laptop Components
Misaligned Latch

螺絲缺件

Detecting Faulty and Missing Laptop Components
Missing Component
相關文章
  • a close-up of a machine

    自動化雷射銲接分類暨檢測解決方案

    雷射焊接具有不同的焊縫特徵。由於產品的焊接位置、樣式不盡相同,無法透過傳統光學檢測辨別焊縫樣態,常造成焊接品質不一的情形。應用Solomon SolVision能夠以焊縫特徵影像訓練AI模型,辨識焊接功率及漏焊瑕疵,並可透過深度學習,精準偵測焊縫的魚鱗紋數量及分布。
  • 如何快速精準辨識多種IC Tray盤字元

    快速辨識多種IC Tray盤字元

    所羅門利用 SolVision學習Tray盤所需辨識的定位點,執行光學字元辨識 (OCR),能夠大幅優化傳統AOI的作業流程,不受識別畫面位移、歪斜及其字元缺陷等限制,精準識別個別料件來源,而隨著AI深度學習件數增加,亦能持續優化AI辨別字元的能力,使辨識字元不再困難。
  • LED PCBA瑕疵檢測解決方案

    運用SolVision AI影像平台技術,在影像樣本中定位並標註鋁基板上的刮痕、髒污等異常及瑕疵情形,透過AI深度學習,即可自動且即時地檢出並定位鋁基板上的各式瑕疵,大幅提升產線生產效率。
  • 襪品外觀缺陷檢測

    襪品瑕疵形態多樣,傳統AOI適合用於整塊布疋的檢測,對於不固定的瑕疵檢測有困難,且容易發生錯殺,仍需人工進行複檢。以SolVision工具完成AI模型的訓練。可快速且精確地找出瑕疵、分類不同瑕疵並剔除不良品,把關產品品質、提升生產效率,透過對瑕疵進行分類與分析,更能夠優化整體製程。