SolVision成功案例

空調冷凍風管端點銲接品質管控方案

學習銲道外觀缺陷檢測

空調及冷凍設備製程導入銲道自動化檢測

空調及冷凍設備的製造過程中,熱交換器的密閉容器所含的鐵管、鏡板、管帽、端板等部件皆需經過銲接工序,為維持銲接的品質,導入AI自動化檢測勢在必行。

人工檢測困難,銲道品質管控成為難題

由於銲接工廠屬高溫高熱的場域,入內需穿著基本防護,且銲道的瑕疵缺陷複雜且不規則,憑藉人工經驗檢測銲道,不容易維持品質一致。

AI幫助銲道品質優化,檢測缺陷瑕疵

使用SolVision的Segmentation技術,學習正常銲道、銲道過細或過粗及無銲道的外觀形狀,進行AI模型的訓練,讓AI學習瑕疵特徵,即可快速檢測銲道是否有瑕疵,挑出有缺陷的銲道進行修補,有效控制銲接製程品質。

銲道檢測案例

完整銲道

Welding Quality Control for Air Conditioning and Refrigeration Products

銲道缺陷

Welding Quality Control for Air Conditioning and Refrigeration Products

銲道過細與缺陷

Welding Quality Control for Air Conditioning and Refrigeration Products
相關文章
  • 封裝晶片邊緣微裂瑕疵檢測解決方案

    由於晶粒邊緣崩裂瑕疵出現的位置及型態不固定,以致傳統光學檢測無法精準地將瑕疵檢出,影響整體產品良率。運用SolVision AI影像技術,將影像樣本中的瑕疵特徵予以標註,完成訓練的AI模型即可自動檢出並標註晶粒邊緣崩裂瑕疵的位置,大幅降低晶片在後續封裝製程中斷裂的風險。
  • a group of square objects

    晶圓不良品分類及瑕疵定位自動化解決方案

    傳統光學檢測無法針對全幅影像進行分類,故無法於第一階段汰除瑕疵過多的晶圓。應用SolVision AI影像平台技術辨識瑕疵特徵。首先判斷晶圓是否具有過多瑕疵,汰除無法修復的不良品。其次運用影像處理技術分割晶圓影像,並以工具偵測瑕疵,記錄其特徵、坐標、面積等資訊,大幅提升後續修補的效率。
  • 快速精準辨識多種橡膠射出成型之瑕疵

    精準辨識多種橡膠射出成型瑕疵

    橡膠射出成形採用AOI檢測塑料缺陷時,由於瑕疵種類及位置多變,易遇橡膠射出瑕疵樣品不足使得瑕疵定性定量困難,檢測精準度不足。利用SolVision AI瑕疵檢測,針對橡膠射出成品瑕疵形狀與顏色建立資料庫,AI學習可後辨識種類及位置多變的瑕疵。有效解決橡膠射出成品瑕疵不固定的檢測問題。
  • 半導體晶片封裝製程接著劑瑕疵檢測解決方案

    固晶接著劑透明,易造成光源折射影響特徵判斷,且爬膠、溢膠不具固定位置及型態,無法創建規則執行傳統光學檢測AOI。運用Solomon SolVision AI影像平台技術建立AI學習模組,自動學習並偵測爬膠、溢膠的特徵及位置。增加多項正確類別提升辨識強度,有效降低環境因素的干擾。