a close up of a pattern of small squares

SolVisionCase Study

晶片收納(In-Tray)跳料檢測解決方案

AI輔助檢測晶盤上晶片跳料瑕疵

封測製程的終端:晶片收納運送

晶盤(IC Tray)是晶片(Chip)的承載盤,檢測、切割完成後的晶片揀至晶盤中的晶穴(Pocket)內以運送至客戶端。然而晶片體積小且質輕,於晶盤上取放時容易跳料,進而產生疊料(Double)、空料(Empty)、歪斜錯置(Tilt)、反轉(Opposite)等情形。

晶盤中晶片跳料情形:不具邏輯且難以預測的瑕疵

晶片於晶盤中跳料的情形係屬隨機,所致的瑕疵型態多樣且難以預測瑕疵所產生的位置。對AOI而言,幾乎無法針對跳料瑕疵設定邏輯並據以檢測。

AI深度學習:以晶片收納異常的影像特徵訓練檢測模型

運用SolVision AI影像平台的Segmentation技術,以具疊料、空料、歪斜錯置、反轉等瑕疵的影像樣本訓練AI模型,AI訓練完成後即可輕易且迅速地辨識並標註晶盤上產生收納異常的位置。

晶片跳片檢測案例

 卡槽內放置正確數量         卡槽重疊2片         卡槽重疊3片

相關文章
  • a close-up of a machine

    自動化雷射銲接分類暨檢測解決方案

    雷射焊接具有不同的焊縫特徵。由於產品的焊接位置、樣式不盡相同,無法透過傳統光學檢測辨別焊縫樣態,常造成焊接品質不一的情形。應用Solomon SolVision能夠以焊縫特徵影像訓練AI模型,辨識焊接功率及漏焊瑕疵,並可透過深度學習,精準偵測焊縫的魚鱗紋數量及分布。
  • 醫療器材品質控管:安全針頭組裝

    安全針頭為透明或白色的塑膠件,其材質與紋路使得辨識不易,以人眼或AOI方法皆容易造成誤判,導致組裝錯誤卻無法有效檢出。所羅門結合機器視覺與人工智慧,使用SolVision工具,針對白色與透明塑膠件的各種紋路與形狀做AI訓練,有效檢出塑膠件的組裝錯誤,同時提高缺陷檢測的效率。
  • 不鏽鋼管字元辨識解決方案

    目前仍採用人力進行自行車車身號碼的辨識與登錄,耗費人工且效率低,若使用AOI進行字元辨識,因不鏽鋼管表面為圓弧曲面,打光容易造成反射,不論以人工或者AOI檢測,針對曲面、反光不鏽鋼管上字樣的辨識皆較為困難。所羅門結合機器視覺與人工智慧,對於光學字元辨識可以得到極佳的辨識效果。
  • a group of square objects

    晶圓不良品分類及瑕疵定位自動化解決方案

    傳統光學檢測無法針對全幅影像進行分類,故無法於第一階段汰除瑕疵過多的晶圓。應用SolVision AI影像平台技術辨識瑕疵特徵。首先判斷晶圓是否具有過多瑕疵,汰除無法修復的不良品。其次運用影像處理技術分割晶圓影像,並以工具偵測瑕疵,記錄其特徵、坐標、面積等資訊,大幅提升後續修補的效率。