SolVision成功案例

空調冷凍風管端點銲接品質管控方案

學習銲道外觀缺陷檢測

空調及冷凍設備製程導入銲道自動化檢測

空調及冷凍設備的製造過程中,熱交換器的密閉容器所含的鐵管、鏡板、管帽、端板等部件皆需經過銲接工序,為維持銲接的品質,導入AI自動化檢測勢在必行。

人工檢測困難,銲道品質管控成為難題

由於銲接工廠屬高溫高熱的場域,入內需穿著基本防護,且銲道的瑕疵缺陷複雜且不規則,憑藉人工經驗檢測銲道,不容易維持品質一致。

AI幫助銲道品質優化,檢測缺陷瑕疵

使用SolVision的Segmentation技術,學習正常銲道、銲道過細或過粗及無銲道的外觀形狀,進行AI模型的訓練,讓AI學習瑕疵特徵,即可快速檢測銲道是否有瑕疵,挑出有缺陷的銲道進行修補,有效控制銲接製程品質。

銲道檢測案例

完整銲道

Welding Quality Control for Air Conditioning and Refrigeration Products

銲道缺陷

Welding Quality Control for Air Conditioning and Refrigeration Products

銲道過細與缺陷

Welding Quality Control for Air Conditioning and Refrigeration Products
相關文章
  • 傳統機台儀表數位化解決方案

    傳統式的氣體監控機台或儀器設備具有儀表板顯示資訊,惟其缺乏數位化介面,SolVision結合機器視覺與人工智慧,運用AI影像平台技術執行光學字元辨識(OCR),將機台儀表影像中的數值轉為數位化資訊,以利統計、監控數據的異常情形,亦可進 % 一步作為後續智能化相關應用的基礎。
  • 醫療器材品質控管:安全針頭組裝

    安全針頭為透明或白色的塑膠件,其材質與紋路使得辨識不易,以人眼或AOI方法皆容易造成誤判,導致組裝錯誤卻無法有效檢出。所羅門結合機器視覺與人工智慧,使用SolVision工具,針對白色與透明塑膠件的各種紋路與形狀做AI訓練,有效檢出塑膠件的組裝錯誤,同時提高缺陷檢測的效率。
  • 塑膠扣具瑕疵檢測解決方案

    射出成型的扣具生產上最為常見的瑕疵為脫模劑油汙、白點、毛邊及殘屑,其中屬油汙瑕疵最難檢出。結合SolVision AI影像平台工具,分別針對各類表面瑕疵型態執行深度學習,訓練完成的AI模型即可即時檢出射出成型時產生油汙與在內的各類瑕疵。
  • Central Processor Of A Computer

    半導體晶片封裝製程,高精度固晶檢測解決方案

    固晶是晶片封裝製程中的重要技術,固晶的精準與否,是半導體封裝產線中產品良率的成敗關鍵。但是傳統光學檢測無法利用撰寫邏輯的方式偵測角度、位移偏差及缺漏等瑕疵,時常造成漏檢、誤判、錯誤定位等缺失,大大影響封裝產線的生產效率。