a group of square objects

SolVision成功案例

晶圆不良品分类及瑕疵定位自动化解决方案

兼具智慧与弹性的晶圆检测技术

晶圆制程与晶圆修复的艺术

晶圆制程中的光刻、刻蚀、薄膜沉积、研磨、互联等步骤,以及环境中悬浮物如微尘、溶剂等,皆可能造成晶圆产生瑕疵,影响产品良率。部分晶圆瑕疵经检出並定位后,可透过激光方式针对可修复的晶粒进行修补,提升产品的良率及可靠度。然而,过多瑕疵的晶圆执行修补不具效率,直接筛除可避免影响整体产能,而部分可修复的晶圆则需检出并精准定位以利排程修补。

Intelligent AI defect detection for silicon wafers

传统光学检测(AOI)的缺点

传统光学检测无法针对全幅影像进行分类,故无法于第一阶段筛除瑕疵过多的晶圆。另一方面,部分大量且细微的瑕疵隨机散布于晶圆上,传统光学检测无法设定规则予以检测,亦极易受到环境光源影响而降低检测效率。

结合影像处理与AI瑕疵检测的SolVision

应用所罗门 SolVision AI影像平台的分类及实例切割技术辨识瑕疵特征。首先以Classification工具判断晶圆是否具有过多瑕疵,筛除无法修復的不良品。其次运用影像处理技术分割晶圆影像,並以Segmentation工具侦测影像中的瑕疵,记录其特征、坐标、面积等信息,大幅提升后续修补的效率。

晶圆瑕疵判定与分类案例

OK: 无明显瑕疵

NG: 瑕疵过多

相关文章
  • 半导体晶片封装制程接着剂瑕疵检测解决方案

    固晶接着剂透明,易造成光源折射影响特征判断,且爬胶、溢胶不具固定位置及型态,无法创建规则执行传统光学检测AOI。运用Solomon SolVision AI影像平台技术建立AI学习模块,自动学习并侦测爬胶、溢胶的特征及位置。增加多项正确类别提升辨识强度,有效降低环境因素的干扰。
  • 高尔夫球杆头品质检测解决方案

    高尔夫球杆头是球具组合中最重要的部份,消费者十分重视杆头完成面的细致程度。运用SolVision AI影像技术,将影像样本中高尔夫球杆头上的细微瑕疵逐一标注,藉以训练AI模型,训练完成后的AI模型即能不受商标、纹路及金属光泽的影响,定位并标注所有细微的表面瑕疵。
  • 球柵阵列封装假焊瑕疵检测解决方案

    运用SolVision AI影像平台的Instance 实例切割技术,将X光影像中锡球重迭的假焊瑕疵予以标注并藉以执行AI模型的深度学习。经训练后的AI即可在具背景噪声、无明显影像边缘的条件下,将假焊瑕疵精准检出。
  • 芯片承载盘检测解决方案

    芯片承载盘是半导体加工制程的关键要素,芯片承载盘的轮廓与定位孔点常因作业造成瑕疵,过去多透过AOI光学检测方式予以检查。然而承载盘不易透过AOI检出并定位瑕疵,严重影响良率及生产效率。运用SolVision AI影像技术执行缺陷检测,以利使用者实时监测并排除承载盘异常。