black and white labeled box

SolVision成功案例

晶圆研磨瑕疵检测解决方案

化学机械平坦化(CMP)的AI辅助品质管控

半导体制造关键:
化学机械平坦化(CMP)影响晶元良率

化学机械平坦化(Chemical Mechanical Planarization, CMP)是半导体制造中不可或缺的製程之一,目的是为改善前製程的微小缺陷。于晶圆上完成一层积体电路后,需透过CMP将表面研磨整平,方可制作下一层积体电路。然而,研磨液中过大的颗粒及微粒凝聚体可能造成晶圆上的微划痕,是CMP製程中最主要的瑕疵类型。

Quality control of chemical mechanical polishing (CMP) processes

CMP制程中,晶圆研磨痕迹让传统AOI难以检测瑕疵

CMP製程中的瑕疵包括微划痕、微粒残留及研磨垫碎屑等。研磨完成后,晶圆会生成极浅且轨跡雷同的研磨痕迹跡,形成影像中的复杂背景,又由于各式瑕疵的形态及位置不固定,使微划痕等瑕疵无法被轻易检出。除了微划痕外,晶圆表面常见瑕疵还包含白色脏污、黑色脏污、水痕、气泡等,种类繁多且复杂,没有既定的特征点,更没有固定的形态,传统AOI即使耗费大量人力撰写编写算法,仍无法精准检测整张晶圆影像的瑕疵资讯。

所罗门AI瑕疵检测,让晶圆瑕疵无所遁形

运用所罗门 SolVision  AI影像平台的实例切割技术,定位并標註晶圆上的微划痕以及脏污等影像特徵,并借以训练AI模型。即便在具有研磨痕迹的影像背景之下,依然可以借由AI视觉轻易地检出深、浅的微划痕及其他脏污瑕疵,并精准地检测出瑕疵所在位置与面积。

晶圆研磨瑕疵检测案例

刮痕

Wafer grinding defect detection case

Wafer grinding defect detection case
相关文章
  • Central Processor Of A Computer

    半导体晶片封装制程,高精度固晶检测解决方案

    固晶是晶片封装制程中的重要技术,固晶的精准与否,是半导体封装产线中产品良率的成败关键。但是传统光学检测无法利用撰写逻辑的方式检测角度、位移偏差及缺漏等瑕疵,经常造成漏检、误判、错误定位等问题,大大影响封装产线的生产效率。
  • 缎带品质AI检测解决方案

    缎带色彩缤纷的特性使得AOI检测容易因为花纹和颜色变化而发生瑕疵漏检或误判。使用SolVision检测各种颜色、花纹的缎带,能够精确找出裂孔、脱丝等瑕疵的位置、大小及形状,不论是检测速度或是精准度都能达到标准。而透过记录与分析瑕疵的样态,可回溯找出制作过程中的问题所在,改善产品制程。
  • AI影像辨识– OCR电子元件字符

    电子组件制造过程追踪为半导体之产出基石,辨识组件编号被视为生产重要环节之一。但较差环境下让AOI辨识更加困难,对于提升产线效率以及降低字符的误判度有很大改善空间。利用SolVision技术执行光学字符识别,有别于传统AOI,不受底色、环境光线及字符种类多等限制,可精准识别个别编码。
  • 高尔夫球杆头品质检测解决方案

    高尔夫球杆头是球具组合中最重要的部份,消费者十分重视杆头完成面的细致程度。运用SolVision AI影像技术,将影像样本中高尔夫球杆头上的细微瑕疵逐一标注,藉以训练AI模型,训练完成后的AI模型即能不受商标、纹路及金属光泽的影响,定位并标注所有细微的表面瑕疵。