SolVision成功案例
晶圓研磨瑕疵檢測解決方案
化學機械平坦化(CMP)的AI輔助品質管控
半導體製造關鍵:
化學機械平坦化(CMP)影響晶元良率
化學機械平坦化(Chemical Mechanical Planarization, CMP)是半導體製造中不可或缺的製程之一,目的係為改善前製程的微小缺陷。於晶圓上完成一層積體電路後,需透過CMP將表面研磨整平,方可製作下一層積體電路。然而,研磨液中過大的顆粒及微粒凝聚體可能造成晶圓上的微劃痕,係CMP製程中最主要的瑕疵類型。
CMP製成中,晶圓研磨痕跡讓傳統AOI難以檢測瑕疵
CMP製程中的瑕疵包括微劃痕、微粒殘留及研磨墊碎屑等。研磨完成後,晶圓會生成極淺且軌跡雷同的研磨痕跡,形成影像中的複雜背景,又由於各式瑕疵的型態及位置不固定,使微劃痕等瑕疵無法被輕易檢出。除了微劃痕外,晶圓表面常見瑕疵還包含白色髒汙、黑色髒汙、水痕、氣泡等,種類繁多且複雜,沒有既定的特徵點,更沒有固定的型態,傳統AOI即使耗費大量人力撰寫演算法,仍無法精準偵測整張晶圓影像之瑕疵資訊。
所羅門AI瑕疵檢測,讓晶圓瑕疵無所遁形
運用所羅門 SolVision AI影像平台的Segmentation技術,定位並標註晶圓上的微劃痕以及髒污等影像特徵,並藉以訓練AI模型。即便在具有研磨痕跡的影像背景之下,依然可以藉由AI視覺輕易地檢出深、淺的微劃痕及其他髒污瑕疵,並精準地偵測出瑕疵所在位置與面積。
晶圓研磨瑕疵檢測案例
刮痕