SolVision成功案例

传统机台仪表数字化解决方案

自动化仪表影像数值读取

光电产品良率关键:镀膜气体参数监控

光电产业中的偏光片制程需透过气体的层流均布使薄膜均匀沉积。为维持镀膜的品质与良率,制程气体的压缩参数监控十分关键。如何解决传统机台仪表数字化,提升产品良率成为一大关键问题。

AI-powered OCR of dashboard readings

数字化困境:传统仪表的界面限制

传统式的气体监控机台或仪器设备具有仪表板显示信息,唯独缺乏数字化界面,无法将数值信息迅即上传至中央监控系统,使整体制程数字化产生断点。

传统仪表的数字化利器:光学字符辨识

SolVision结合机器视觉与人工智能,运用AI影像平台的实例切割技术执行光学字元辨识(Optical Character Recognition, OCR),将机台仪表影像中的数值转为数字化信息,以利统计、监控数据的异常情形,亦可进一步作为后续智能化相关应用的基础。

仪表数字化步骤

相关文章
  • SMT制程的回焊短路检测解决方案

    运用AI视觉检测IC Pin脚间的焊锡相连情形 什么是SMT(Surface Mount Technology)表面贴焊(装)技术? 表面黏著技术,是一种电子装联技术,起源于1960年代,最初由美国IBM公司进行技术研发,之后于1980年代后期渐趋成熟。此技术是将电子元件,如电阻、电容、电晶体、积体电路等等安装到印刷电路板上,并通过钎焊形成电气联结。其使用之元件又被简称为表面安装元件。 PCB可靠度的第一道关卡:SMT制程 SMT表面贴装技术(Surface Mount Technology,SMT)是电子业的组装焊接技术之一,以锡膏印制、点胶、零件组装、热风回焊等制程将电子零组件与PCB结合。然而回焊制程中,相邻的锡球稍有不慎即会造成短路。由于PCB上元件繁多,若能即时检出短路情形并排除障碍点,将能大幅提升产线效能。 IC PIN角瑕疵检测案例 正确 NG: 焊锡相连 NG: 焊锡相连
  • a group of square objects

    晶圆不良品分类及瑕疵定位自动化解决方案

    传统光学检测无法针对全幅影像进行分类,故无法于第一阶段汰除瑕疵过多的晶圆。应用SolVision AI影像平台技术辨识瑕疵特征。首先判断晶圆是否具有过多瑕疵,汰除无法修复的不良品。其次运用图像处理技术分割晶圆影像,并以工具侦测瑕疵,记录其特征、坐标、面积等信息,大幅提升后续修补的效率。
  • 如何快速精準辨識多種IC Tray盤字元

    快速辨识多种萃盘字符

    所罗门利用 SolVision学习Tray盘所需辨识的定位点,执行光学字符识别 (OCR),能够大幅优化传统AOI的作业流程,不受识别画面位移、歪斜及其字符缺陷等限制,精准识别个别料件来源,而随着AI深度学习件数增加,亦能持续优化AI辨别字符的能力,使辨识字符不再困难。
  • brown cookies on white ceramic plate

    食品加工产线输送带瑕疵检测解决方案

    食品加工业首重食品卫生及食用安全,油炸食品的外观不一。传统的食品外观检测透过大量人力执行,效率不彰。所罗门结合机器视觉与人工智能,运用Solomon SolVision AI影像平台技术执行缺陷检测。在快速且大量生产的油炸食品加工产线中,辨识多种不同的瑕疵样态,进而将不良品实时检出。