Multi Colored Plastic Round Toy

SolVision成功案例

紗線瑕疵檢測的最佳解決方案

紡織業者如何保有生產效益並兼顧紗線品質

紡織業者的大挑戰:紡織業者對於紗線的高品質要求

面對缺乏上游自產優勢及勞力成本相對高的困境,紡織市場針對生產效益的考量,已趨於尋求高品質低成本的走勢,以因應國際競爭及作出產業差異化。如何在保有生產效益的同時兼顧紗線品質,是目前紡織業者最大的挑戰。

人眼紗線挑選與自動光學檢測檢測之效力有限

現今紗場依舊多以人工檢測為主,漏檢率高且耗費工時長,紗線瑕疵如:紙管汙點、變形、汙紗、破紗、拋紗、毛絲、雙色紗等種類眾多,使人工檢測不利於實際品質要求,自動光學檢測(AOI)面對不固定瑕疵時亦難以檢測,且誤判率高,仍需人工複檢。為使勞力成本配置於更有效益的工作上,紗線檢測應尋求更高效率的檢測解決方案。

運用人力或光學檢測紗線瑕疵缺乏效率

使用SolVision的Segmentation技術,針對紙管及紗線上多種瑕疵進行特徵提取,做出AI模型的訓練,使AI學習辨識瑕疵特徵,快速且精準地找出各項缺陷,有效改善檢測速率、成品良率並降低品檢負擔,隨著學習件數的增加,能持續優化AI辨別瑕疵的能力,亦可將學習成果快速導入各項產線之中。

紗線檢測案例

紙管汙點

Automated Visual Inspection of Yarn Paper tube stain

紙管破損

Automated Visual Inspection of Yarn Broken paper tube

汙紗

Automated Visual Inspection of Yarn Broken yarn

毛絲

Automated Visual Inspection of Yarn toss
AI Visual Inspection for Glass Bottles

Dirty yarn

Needle marks

Broken yarn

Automated Visual Inspection of Yarn

Distortion

AI Visual Inspection for Glass Bottles
Automated Visual Inspection of Yarn
相關文章
  • 積層陶瓷電容製程優化解決方案

    SMD電容體積較小,觀察缺陷需在顯微鏡等級的微觀工具下觀察,且因MLCC非常脆弱,檢測過程也須非常小心,困難度極高。使用SolVision工具,學習電極上凸出部分的瑕疵形狀及位置,建立AI模型,在AI學習瑕疵特徵之後,即可快速檢測電容凸出部分的缺陷,大幅提升整體製程的良率。
  • Man in Black Jacket and Black Knit Cap Inspecting Car Engine

    汽車引擎號碼快速讀取解決方案

    引擎號碼係以烙印方式印刷在引擎上,容易受到干擾,字體、背景明暗不均的情形,不易在產線上快速識別引擎上的編碼。運用SolVision AI技術,以不同亮度的影像樣本訓練執行光學字元辨識(OCR),將影像中引擎號碼轉為數值,即時登錄至原廠資料庫系統中與車身號碼連結。
  • presence/absence detection of PTP using SolVision AI inspection software

    泡殼包裝品質管理解決方案

    運用SolVision AI影像平台的Instance Segmentation技術,以包裝良品及具各種瑕疵類型的影像樣本訓練AI模型。訓練完成的模型可即時且迅速地辨識每一反光或透明泡殼的包裝及填充情形,並將偵測到的瑕疵予以標註並分類。
  • 金屬外殼瑕疵檢測與分類解決方案

    利用SolVision的瑕疵檢測工具,做出AI模型Training,針對瑕疵的形狀長相建立瑕疵缺陷資料庫,將複雜的缺陷人工檢測轉化成精準度高且規律的檢測系統,以深度學習辨識異常並忽略可接受的微小缺陷,有效提升檢測精準度及速率,兼顧產品嚴格的品質要求。