质量/安全检查

  • a close up of a blue and yellow background

    LED基板分区外观品质控管解决方案

    常见的LED基板瑕疵包括边缘毛边、焊垫氧化杂质、刮痕等,在瑕疵特征与背景相近的情况下,AOI检测不易将瑕疵检出。运用SolVision AI影像技术,以各式LED基板上瑕疵影像样本训练,经深度学习的AI即可精准地将瑕疵检出并标注。此外亦可指认瑕疵生成的所属区域,达到分区检测的目的。

  • black and white labeled box

    晶圆研磨瑕疵检测解决方案

    化学机械平坦化(CMP)是半导体制造中不可或缺的制程之一,然而,研磨液中过大颗粒及微粒凝聚体可能造成晶圆上的微划痕,是CMP制程中最主要的瑕疵类型。传统AOI检测即使耗费大量人力撰写算法,仍无法精准侦测整张晶圆影像瑕疵。运用所罗门SolVision解决方案来精准找到研磨瑕疵

  • 安规认证标章印刷瑕疵检测

    国内外安规认证的标章众多,例如CE、EAC等,各有不同的标章图示。过多的版面信息在大量印刷过程中不易检出多印或漏印的情形,可能影响商品的贩卖及使用。应用SolVision AI影像工具,训练AI模型。训练完成的AI模型即会自动检出并标示所有差异地方,即为版面的印刷瑕疵。

  • multicolored electronic part

    电源供应器内部线材组接解决方案

    电源供应器内部组件及线路多元且复杂,检测接点时容易受到背景干扰而影响视觉判断。额外使用人工及AOI传统光学检测皆不易执行,难以于产线端有效管控产品质量。经训练的AI模型可以精准地侦测并定位线材错接的电源供应器接线瑕疵,实时将不良品检出。

  • 快速辨识轮胎内胎印刷编码

    轮胎在制程的环节经历许多高压、高负荷与高温差的工序,使内胎表面字迹模糊且刷色深浅不齐,影响内胎编码的辨识度,不利于人工辨识与传统AOI检测。利用SolVision工具,针对轮胎内胎编码的数字与形状进行拍摄,进行AI模型训练,能成功辨识,有效改善编码辨识的正确率。

  • 空调冷冻风管端点焊接品质管控方案

    空调及冷冻设备的制造过程中,热交换器的密闭容器所含的铁管、镜板、管帽、端板等部件皆需经过焊接工序,但由于焊接工厂属高温高热的场域,入内需穿着基本防护,且焊道的瑕疵缺陷复杂且不规则,凭借人工经验检测焊道,不容易维持质量一致,导入AI自动化检测势在必行。

  • 透明瓶装液体沉淀物AI自动化检测解决方案

    液体生技药品常以透明瓶装保存,由于透明瓶装的反光特性、受测物沉淀情形不一因素,使瓶装药品的检测无法以一般光学检测取代人力执行。所罗门结合机器视觉与人工智能,运用SolVision AI从数据库中的影像特征判断沉淀情形。透过深度学习技术,可辨识7种不同的沉淀样态,进而判断内容物的质量。

  • 缎带品质AI检测解决方案

    缎带色彩缤纷的特性使得AOI检测容易因为花纹和颜色变化而发生瑕疵漏检或误判。使用SolVision检测各种颜色、花纹的缎带,能够精确找出裂孔、脱丝等瑕疵的位置、大小及形状,不论是检测速度或是精准度都能达到标准。而透过记录与分析瑕疵的样态,可回溯找出制作过程中的问题所在,改善产品制程。

  • 快速精準辨識多種橡膠射出成型之瑕疵

    精准辨识多种橡胶射出成型瑕疵

    橡胶射出成形采用AOI检测塑料缺陷时,由于瑕疵种类及位置多变,易遇橡胶射出瑕疵样品不足使得瑕疵定性定量困难,检测精准度不足。利用SolVision AI瑕疵检测,针对橡胶射出成品瑕疵形状与颜色建立数据库,AI学习可后辨识种类及位置多变的瑕疵。有效解决橡胶射出成品瑕疵不固定的检测问题。