包裝密封檢測解決方案

以AI技術判斷包裝是否確實密封

包裝密封的重要性:
避免產線非正常損耗與污染

產品包裝的密封能夠確保安全及品質,如果有缺陷不僅影響產品的完整性,亦會造成生產機器非正常耗損及汙染,因此密封是否完全是維持產品品質的關鍵。

自動光學(AOI)與人工檢測:密封缺陷情形差異甚小

除了判斷包裝是否密封之外,若要找出問題的根源,須進一步確認密封不完全的型態與原因,但因為密封缺陷的各類型態差異甚小,且物件表面呈高反光,不論是人眼或自動光學檢測(AOI)皆不易找出缺陷並將之分類。

包裝品檢新AI技術:密封缺陷分類

所羅門結合機器視覺與人工智慧使用 SolVision 的Classification工具,由影像定義出密封完好的狀態,並與多種缺陷作比較,包括下方密封不確實、下方與側邊皆未密封、下方與側邊密封不確實等,可即時檢出沒有密封完整的包裝並將缺陷分類。

包裝密封缺陷檢測案例

正確
正確
下方密封不完整
側邊密封不完整
下方及側邊皆未密封
相關文章
  • 空調冷凍風管端點銲接品質管控方案

    空調及冷凍設備的製造過程中,熱交換器的密閉容器所含的鐵管、鏡板、管帽、端板等部件皆需經過銲接工序,但由於銲接工廠屬高溫高熱的場域,入內需穿著基本防護,且銲道的瑕疵缺陷複雜且不規則,憑藉人工經驗檢測銲道,不容易維持品質一致,導入AI自動化檢測勢在必行。
  • Multi Colored Plastic Round Toy

    紗線瑕疵檢測的最佳解決方案

    保有生產效益的同時兼顧紗線品質,是紡織業者最大挑戰。現今紗場依以人工檢測為主,漏檢率高且工時長,不利實際品質要求,傳統AOI面對不固定瑕疵時亦難以檢測,誤判率高。使用SolVision工具使AI學習辨識瑕疵特徵,快速且精準地找出各項缺陷,有效改善檢測速率、成品良率並降低品檢負擔。
  • Gray Round Metal Part

    電腦零組件瑕疵檢測解決方案

    硬碟支架製造過程出現的瑕疵種類繁多,包括金屬的壓傷、表面白霧、孔批麟、孔黑等等,透過人工檢測不容易逐一檢出,然而微小的缺陷在組裝過程可能造成孔隙無法對齊等問題發生。使用SolVision工具AI學習瑕疵特徵後,能夠快速檢測出硬碟金屬支架上的各類微小瑕疵。
  • 快速精準辨識多種橡膠射出成型之瑕疵

    精準辨識多種橡膠射出成型瑕疵

    橡膠射出成形採用AOI檢測塑料缺陷時,由於瑕疵種類及位置多變,易遇橡膠射出瑕疵樣品不足使得瑕疵定性定量困難,檢測精準度不足。利用SolVision AI瑕疵檢測,針對橡膠射出成品瑕疵形狀與顏色建立資料庫,AI學習可後辨識種類及位置多變的瑕疵。有效解決橡膠射出成品瑕疵不固定的檢測問題。