a close up of a pattern of small squares

SolVision成功案例

快速辨識多種IC Tray盤字元

利用AI檢測 精準識別複雜且差異大的IC Tray盤字元

編碼追蹤比對IC Tray盤料件

IC Tray盤組件射出成型時,皆個別編制浮雕料件編號,作為追蹤料件時的主要識別依據,方便後續以光學字元識別其來源及其它特定含意。

IC Tray盤料件使用AOI字元辨識技術的限制

在IC Tray盤射出成型時,當識別之字元有位移、缺陷、粘連、輪廓不明顯及位置工整度不一致等不可控因素時,將大幅增加特徵提取難度,使得AOI難以清楚辨識與讀取。

SolVision強化光學字元辨識能力(OCR)

利用 SolVision 的 Feature Detection 功能學習Tray盤所需辨識的定位點,再藉由 Segmentation 技術執行光學字元辨識 (Optical Character Recognition, OCR),能夠大幅優化傳統AOI的作業流程,不受識別畫面位移、歪斜及其字元缺陷等限制,精準識別個別料件來源,而隨著學習件數的增加,亦能持續優化AI辨別字元的能力,使辨識字元不再困難。

AI系統成功辨識各式字元

相關文章
  • 高爾夫球桿頭品質檢測解決方案

    高爾夫球桿頭是球具組合中最重要的部份,消費者十分重視桿頭完成面的細緻程度。運用SolVision AI影像技術,將影像樣本中高爾夫球桿頭上的細微瑕疵逐一標註,藉以訓練AI模型,訓練完成後的AI模型即能不受商標、紋路及金屬光澤的影響,定位並標註所有細微的表面瑕疵。
  • a close up of a blue and yellow background

    LED基板分區外觀品質控管解決方案

    常見的LED基板瑕疵包括邊緣毛邊、銲墊氧化雜質、刮痕等,在瑕疵特徵與背景相近的情況下,AOI檢測不易將瑕疵檢出。運用SolVision AI影像技術,以各式LED基板上瑕疵影像樣本訓練,經深度學習的AI即可精準地將瑕疵檢出並標註。此外亦可指認瑕疵生成的所屬區域,達到分區檢測的目的。
  • 塑膠扣具瑕疵檢測解決方案

    射出成型的扣具生產上最為常見的瑕疵為脫模劑油汙、白點、毛邊及殘屑,其中屬油汙瑕疵最難檢出。結合SolVision AI影像平台工具,分別針對各類表面瑕疵型態執行深度學習,訓練完成的AI模型即可即時檢出射出成型時產生油汙與在內的各類瑕疵。
  • Central Processor Of A Computer

    半導體晶片封裝製程,高精度固晶檢測解決方案

    固晶是晶片封裝製程中的重要技術,固晶的精準與否,是半導體封裝產線中產品良率的成敗關鍵。但是傳統光學檢測無法利用撰寫邏輯的方式偵測角度、位移偏差及缺漏等瑕疵,時常造成漏檢、誤判、錯誤定位等缺失,大大影響封裝產線的生產效率。