Person Doing Blood Test

SolVision成功案例

细胞病变辨识及分类解决方案

AI辅助细胞特征辨识

细胞病变重要依据:细胞型态变化

在进行细胞病变检验时,透过活体组织切片或液态切片的方式取得检体,检体里可能包含肿瘤脱落的细胞,或与肿瘤相关的DNA。医生以细胞的特征与型态判断为癌细胞或正常细胞,并以细胞病变的程度作为后续治疗计划规划以及预后判断的参考。
AI enabled cancer cell detection

切片影像特征多样,细胞病变评断标准不一

医学实务上透过细胞特征的分析,可区分癌细胞及正常细胞并针对癌细胞进行分类。然而,切片显微影像中细胞的外观不固定,病变发生的位置、型态也十分随机,导致每位医师对于癌细胞的判断及圈选标准不尽一致,更无法透过传统光学检测以撰写逻辑方式判断癌细胞的型态。

资料扩增结合AI深度学习技术,准确判断细胞病变

运用SolVision AI影像平台的分类工具,使AI模型深度学习正常细胞特征及癌细胞的病变特征。辅以资料扩增技术仿真细胞型态的多变性及多样性并执行强化训练,增加AI模型执行判断的稳定性。训练完成的AI模型可辨识细胞病变的特征并予以分类,进而判断患者病情的状况。

细胞病变影像检验案例

正常细胞

Cell lesion imaging test case

病变中期

相关文章
  • 缎带品质AI检测解决方案

    缎带色彩缤纷的特性使得AOI检测容易因为花纹和颜色变化而发生瑕疵漏检或误判。使用SolVision检测各种颜色、花纹的缎带,能够精确找出裂孔、脱丝等瑕疵的位置、大小及形状,不论是检测速度或是精准度都能达到标准。而透过记录与分析瑕疵的样态,可回溯找出制作过程中的问题所在,改善产品制程。
  • Man in Black Jacket and Black Knit Cap Inspecting Car Engine

    汽车发动机号码快速读取解决方案

    引擎号码系以烙印方式印刷在引擎上,容易受到干扰,字体、背景明暗不均的情形,不易在产在线快速识别引擎上的编码。运用SolVision AI技术,以不同亮度的影像样本训练执行光学字符识别(OCR),将影像中引擎号码转为数值,实时登录至原厂数据库系统中与车身号码链接。
  • 压花石膏板瑕疵检测解决方案

    石膏板出厂前,瑕疵情形皆须确实检出。然而,由于压花石膏板的外观特性,瑕疵在复杂背景中模糊,无法以AOI及人眼确实辨识。使用所罗门 SolVision AI影像平台技术,撷取板材上的脏痕、过大压花图案以及压花不清等瑕疵,可确实检出并定位板材上的瑕疵,具体提升石膏板板材的质量与良率。
  • a group of square objects

    晶粒边缘崩裂检测解决方案

    由于晶粒边缘崩裂瑕疵出现的位置及型态不固定,以致传统光学检测无法精准地将瑕疵检出,影响整体产品良率。运用SolVision AI影像技术,将影像样本中的瑕疵特征予以标注,完成训练的AI模型即可自动检出并标注晶粒边缘崩裂瑕疵的位置,大幅降低芯片在后续封装制程中断裂的风险。