a group of square objects

SolVision成功案例

封裝晶片邊緣微裂瑕疵檢測解決方案

透過非監督式訓練AI模型,判斷封裝晶片的內部瑕疵

封裝製程中的切割面崩裂瑕疵

切割製程技術是影響晶片品質的關鍵,製程中常見切割面崩裂的情形。晶片封裝完成後,由於晶片已黏貼於塑膠或陶瓷的封裝外殼內,更加不易以一般檢測方式檢出晶片在前製程中所產生的邊緣微裂瑕疵,影響晶片產品的生產良率。

封裝晶片內部瑕疵無法以AOI檢測

封裝完成的晶片僅能透過特殊的光源及鏡頭以穿透的方式取像,成像的特性使得晶片邊緣微裂瑕疵的色澤與邊緣色澤極其相似,不易分辨。此外,邊緣微裂的角度及型態也是不規則變化,無法以AOI方式判別瑕疵。

非監督式學習訓練AI模型,標註定位瑕疵

運用SolVision AI影像平台的非監督式學習工具Anomaly Detection,以不具瑕疵的影像樣本(Golden Sample)執行AI深度學習,並輔以資料擴增技術提升AI模型對於標準樣本的辨識度。訓練完成的AI模型即能辨別受測物件與標準樣本的相異之處,定位並標註封裝晶片內邊緣微裂瑕疵的位置,完全不受穿透成像特性的影響。

封裝晶片內部瑕疵檢測案例

Original
Result
Original
Result
Original
Result
相關文章
  • Multi Colored Plastic Round Toy

    紗線瑕疵檢測的最佳解決方案

    保有生產效益的同時兼顧紗線品質,是紡織業者最大挑戰。現今紗場依以人工檢測為主,漏檢率高且工時長,不利實際品質要求,傳統AOI面對不固定瑕疵時亦難以檢測,誤判率高。使用SolVision工具使AI學習辨識瑕疵特徵,快速且精準地找出各項缺陷,有效改善檢測速率、成品良率並降低品檢負擔。
  • 壓花石膏板瑕疵檢測解決方案

    石膏板出廠前,瑕疵情形皆須確實檢出。然而,由於壓花石膏板的外觀特性,瑕疵在複雜背景中模糊,無法以AOI及人眼確實辨識。使用所羅門 SolVision AI影像平台技術,擷取板材上的髒痕、過大壓花圖案以及壓花不清等瑕疵,可確實檢出並定位板材上的瑕疵,具體提升石膏板板材的品質與良率。
  • 晶片收納(In-Tray)跳料檢測解決方案

    晶片於晶盤中跳料的情形係屬隨機,所致的瑕疵型態多樣且難以預測瑕疵所產生的位置。運用SolVision AI影像平台技術,以具疊料、空料、歪斜錯置、反轉等瑕疵的影像樣本訓練AI模型,AI訓練完成後即可輕易且迅速地辨識並標註晶盤上產生收納異常的位置。
  • 紡織線架成品瑕疵檢測

    透過AI視覺技術,快速檢測紡織線架上的成品是否有瑕疵,進一步提升產線生產力。