瑕疵檢測

  • 漸層玻璃瓶瑕疵檢測

    漸層玻璃瓶皆經過噴砂製程霧面處理,製作過程常見的瑕疵類型為色澤不均或者瓶身出現黑點,而這些瑕疵因無法明確定義且樣式不固定,難以採用AOI方法進行檢測。訓練完成的AI模型即可快速檢出玻璃瓶身各角度之瑕疵分布,並標註出缺陷位置。

  • LED PCBA瑕疵檢測解決方案

    運用SolVision AI影像平台技術,在影像樣本中定位並標註鋁基板上的刮痕、髒污等異常及瑕疵情形,透過AI深度學習,即可自動且即時地檢出並定位鋁基板上的各式瑕疵,大幅提升產線生產效率。

  • 包裝密封檢測解決方案

    除了判斷包裝是否密封之外,須進一步確認密封不完全的型態與原因,但因為密封缺陷的型態差異小,且物件表面呈高反光,不論是人眼或AOI皆不易找出缺陷並將之分類。所羅門使用 SolVision工具,由影像定義出密封完好的狀態,並與多種缺陷作比較,可即時檢出沒有密封完整的包裝並將缺陷分類。

  • 醫療器材品質控管:安全針頭組裝

    安全針頭為透明或白色的塑膠件,其材質與紋路使得辨識不易,以人眼或AOI方法皆容易造成誤判,導致組裝錯誤卻無法有效檢出。所羅門結合機器視覺與人工智慧,使用SolVision工具,針對白色與透明塑膠件的各種紋路與形狀做AI訓練,有效檢出塑膠件的組裝錯誤,同時提高缺陷檢測的效率。

  • 醫療口罩製造品質管控解決方案

    口罩產品瑕疵種類繁多,包括掉線、皺褶、鼻墊片缺漏及穿透、破洞、角切、髒污、側邊凸出及過濾層破損等。難以透過AOI方式檢出全部的瑕疵。運用SolVision AI影像技術,將影像樣本中各類型瑕疵予以標註,AI經深度學習後即可於品管端精準辨識口罩上是否有瑕疵,進而將不良品汰除。

  • 壓花石膏板瑕疵檢測解決方案

    石膏板出廠前,瑕疵情形皆須確實檢出。然而,由於壓花石膏板的外觀特性,瑕疵在複雜背景中模糊,無法以AOI及人眼確實辨識。使用所羅門 SolVision AI影像平台技術,擷取板材上的髒痕、過大壓花圖案以及壓花不清等瑕疵,可確實檢出並定位板材上的瑕疵,具體提升石膏板板材的品質與良率。

  • 高爾夫球桿頭品質檢測解決方案

    高爾夫球桿頭是球具組合中最重要的部份,消費者十分重視桿頭完成面的細緻程度。運用SolVision AI影像技術,將影像樣本中高爾夫球桿頭上的細微瑕疵逐一標註,藉以訓練AI模型,訓練完成後的AI模型即能不受商標、紋路及金屬光澤的影響,定位並標註所有細微的表面瑕疵。

  • a close up of a blue and yellow background

    LED基板分區外觀品質控管解決方案

    常見的LED基板瑕疵包括邊緣毛邊、銲墊氧化雜質、刮痕等,在瑕疵特徵與背景相近的情況下,AOI檢測不易將瑕疵檢出。運用SolVision AI影像技術,以各式LED基板上瑕疵影像樣本訓練,經深度學習的AI即可精準地將瑕疵檢出並標註。此外亦可指認瑕疵生成的所屬區域,達到分區檢測的目的。

  • black and white labeled box

    晶圓研磨瑕疵檢測解決方案

    化學機械平坦化(CMP)是半導體製造中不可或缺的製程之一,然而,研磨液中過大顆粒及微粒凝聚體可能造成晶圓上的微劃痕,是CMP製程中最主要的瑕疵類型。傳統AOI檢測即使耗費大量人力撰寫演算法,仍無法精準偵測整張晶圓影像瑕疵。運用所羅門SolVision解決方案來精準找到研磨瑕疵