生技医疗业

  • Surgical clamps and medical equipment on a green surgical tray inside operating room

    医疗手术器械的AI识别与分类

    使用 META-aivi 优化手术器械准备,以增强病人安全。可节省 60% 的时间,实现 100% 物品识别准确率。

  • transparent IV bag on a clear background

    透过AI进行输液袋异物检测

    探索SolVision如何在IV袋中實現100%的異物檢測準確率。了解我們關於醫療保健領域高效AI檢測的案例研究。

  • presence/absence detection of PTP using SolVision AI inspection software

    泡壳包装品质管理解决方案

    运用SolVision AI影像平台的Instance 实例切割技术,以包装良品及具各种瑕疵类型的影像样本训练AI模型。训练完成的模型可实时且迅速地辨识每一反光或透明泡壳的包装及填充情形,并将侦测到的瑕疵予以标注并分类。

  • 细胞病变辨识及分类解决方案

    切片显微影像中细胞的外观不固定,细胞病变发生的位置、型态也十分随机,导致每位医师对于癌细胞的判断及圈选标准不尽一致,更无法透过传统光学检测以撰写逻辑方式判断癌细胞的型态。数据扩增结合AI深度学习技术可以更快速准确地判读细胞特征!

  • 渐层玻璃瓶瑕疵检测

    渐层玻璃瓶皆经过喷砂制程雾面处理,制作过程常见的瑕疵类型为色泽不均或者瓶身出现黑点,而这些瑕疵因无法明确定义且样式不固定,难以采用AOI方法进行检测。训练完成的AI模型即可快速检出玻璃瓶身各角度之瑕疵分布,并标注出缺陷位置。

  • 包装密封检测解决方案

    除了判断包装是否密封之外,须进一步确认密封不完全的型态与原因,但因为密封缺陷的型态差异小,且对象表面呈高反光,不论是人眼或AOI皆不易找出缺陷并将之分类。所罗门使用 SolVision工具,由影像定义出密封完好的状态,并与多种缺陷作比较,可实时检出没有密封完整的包装并将缺陷分类。

  • 医疗器材品质控管:安全针头组装

    安全针头为透明或白色的塑料件,其材质与纹路使得辨识不易,以人眼或AOI方法皆容易造成误判,导致组装错误却无法有效检出。所罗门结合机器视觉与人工智能,使用SolVision工具,针对白色与透明塑料件的各种纹路与形状做AI训练,有效检出塑料件的组装错误,同时提高缺陷检测的效率。

  • 医疗口罩制造品质管控解决方案

    口罩产品瑕疵种类繁多,包括掉线、皱褶、鼻垫片缺漏及穿透、破洞、角切、脏污、侧边凸出及过滤层破损等。难以透过AOI方式检出全部的瑕疵。运用SolVision AI影像技术,将影像样本中各类型瑕疵予以标注,AI经深度学习后即可于品管端精准辨识口罩上是否有瑕疵,进而将不良品汰除。

  • 透明点滴袋打印标签辨识分类解决方案

    各式输液皆以透明点滴袋包装,点滴袋上都会清楚注明种类、浓度及容量信息。由于各式点滴袋体上打印卷标位置不一,在产线尚无法以一般光学检测取代人工进行品项分类。所罗门运用SolVision技术,针对点滴袋体上的名称、浓度、容量等影像信息训练AI学习影像特征,可以快速辨识并分类各式输液品项。