产品
工业自动化解决方案
SolVision
AI瑕疵辨识和图像检测
AccuPick 3D Bin Picking
视觉智能取放系统
SolMotion
视觉引导机器人解决方案
AccuPick LM
自动化高效定位系统
增强智能解決方案
META-aivi
AR + AI 泛用型视觉系统
应用
机器人
三维比对
打磨
深框无序抓取
自动化配套
拆垛
取放搬运
拆架
视觉引导机器人
非机器人
分类识别
判别有无
计数
质量/安全检查
瑕疵检测
远程监控
OCR光学字符识别
标准操作程序验证
产业解决方案
航天业
物流业
石化业
汽车业
制造业
公用事业
建造业
金属加工业
半导体产业
电子业
光电业
智能制造业
食品业
生技医疗业
纺织业
可再生能源业
资源
成功案例
博客
产品与应用视频
产品手册
关于我们
公司
新闻与活动
客户评价
联络我们
简体中文
English
繁體中文
简体中文
日本語
Español
Português
Deutsch
Français
Italiano
Türkçe
Tiếng Việt
한국어
ไทย
Choose a language
English
繁體中文
简体中文
日本語
Español
Português
Deutsch
Français
Italiano
Türkçe
Tiếng Việt
한국어
ไทย
搜尋
瑕疵检测
缎带品质AI检测解决方案
缎带色彩缤纷的特性使得AOI检测容易因为花纹和颜色变化而发生瑕疵漏检或误判。使用SolVision检测各种颜色、花纹的缎带,能够精确找出裂孔、脱丝等瑕疵的位置、大小及形状,不论是检测速度或是精准度都能达到标准。而透过记录与分析瑕疵的样态,可回溯找出制作过程中的问题所在,改善产品制程。
SolVision
成功案例
瑕疵检测
纺织业
质量/安全检查
袜品外观缺陷检测
袜品瑕疵形态多样,传统AOI适合用于整块布疋的检测,对于不固定的瑕疵检测有困难,且容易发生错杀,仍需人工进行复检。以SolVision工具完成AI模型的训练。可快速且精确地找出瑕疵、分类不同瑕疵并剔除不良品,把关产品质量、提升生产效率,透过对瑕疵进行分类与分析,更能够优化整体制程。
SolVision
分类识别
成功案例
瑕疵检测
纺织业
物料管理优化方案,提高产品标签辨识度
电子产业中,如果料号标签无法辨识会大幅降低作业效率。卷标字体印刷不良卷标上的字体在印刷过程容易产生不规则的细微瑕疵,使得AOI难以辨识。利用SolVision进行缺陷以及字符辨识之AI深度学习,即便卷标字体出现不规则的缺陷仍能正确辨识,大幅降低物料管理的成本支出,提高库存管理正确性。
SolVision
OCR光学字符识别
制造业
成功案例
瑕疵检测
电子业
精准辨识多种橡胶射出成型瑕疵
橡胶射出成形采用AOI检测塑料缺陷时,由于瑕疵种类及位置多变,易遇橡胶射出瑕疵样品不足使得瑕疵定性定量困难,检测精准度不足。利用SolVision AI瑕疵检测,针对橡胶射出成品瑕疵形状与颜色建立数据库,AI学习可后辨识种类及位置多变的瑕疵。有效解决橡胶射出成品瑕疵不固定的检测问题。
SolVision
成功案例
瑕疵检测
石化业
质量/安全检查
食品加工产线输送带瑕疵检测解决方案
食品加工业首重食品卫生及食用安全,油炸食品的外观不一。传统的食品外观检测透过大量人力执行,效率不彰。所罗门结合机器视觉与人工智能,运用Solomon SolVision AI影像平台技术执行缺陷检测。在快速且大量生产的油炸食品加工产线中,辨识多种不同的瑕疵样态,进而将不良品实时检出。
SolVision
成功案例
瑕疵检测
质量/安全检查
食品业
金属外壳瑕疵检测与分类解决方案
利用SolVision的瑕疵检测工具,做出AI模型Training,针对瑕疵的形状长相建立瑕疵缺陷数据库,将复杂的缺陷人工检测转化成精准度高且规律的检测系统,以深度学习辨识异常并忽略可接受的微小缺陷,有效提升检测精准度及速率,兼顾产品严格的质量要求。
SolVision
分类识别
成功案例
瑕疵检测
电子业
质量/安全检查
金属加工业
自动化激光焊接分类暨检测解决方案
雷射焊接具有不同的焊缝特征。由于产品的焊接位置、样式不尽相同,无法透过传统光学检测辨别焊缝样态,常造成焊接质量不一的情形。应用Solomon SolVision能够以焊缝特征影像训练AI模型,辨识焊接功率及漏焊瑕疵,并可透过深度学习,精准侦测焊缝的鱼鳞纹数量及分布。
SolVision
分类识别
成功案例
瑕疵检测
金属加工业
商品外包装印刷瑕疵检测解决方案
做为商品外包装材料,软质的铝箔袋常在印刷过程中产生印刷错误、歪斜、脱落及漏印等情形。统光学检测和人工的方式出错率高。运用SolVision的Anomaly Detection工具,训练完成的模型即可针对印刷文字、图案上的形状、颜色等特征差异执行比对,侦测并标注瑕疵所在位置。
SolVision
成功案例
瑕疵检测
食品业
SMT制程的回焊短路检测解决方案
SMT制程回焊过程中,过多锡膏量或是印刷偏移可能导致锡球间短路,过去以人工方式检测,效率不彰。SMT多余锡膏在高温下的流动型态无法预测,难以传统AOI检出。运用SolVision AI技术,将SMT制程影像样本中的回焊短路瑕疵定位并标注,训练AI模型。可轻易检出锡球间短路情形。
SolVision
半导体产业
成功案例
瑕疵检测
电子业