质量/安全检查

  • META-aivi SOP智能工安巡检

    在石化工厂的环境中,充满许多大型化学槽车,其专门承载危险性较高的化学液体及气体,以提供大型工厂使用。然而,由于化学品危险性高,装卸过程中如有任何一个环节出错,恐导致大量化学品泄漏,造成可能的财物损失、人员安全问题以及环境污染等严重工业灾害。故如何落实人员正确的操作流程与减少人为错误,是工厂安全的关键之一。

  • META-aivi 智能电子制造

    主机板是电脑的核心零件,它设有晶元组,同时更提供显卡、CPU、内存、硬盘及外接装置等应用接合,以利电脑中各软硬件组件能整合运作。然而主机板上充满许多不同的零部件,制造、组装步骤繁多,稍有疏忽遗漏电脑将无法顺利运作,因此如何确保整体生产的良率与品质,是电子制造的首要任务。

  • an electrician inspecting a wiring panel inside a smart factory

    META-aivi 智能工安巡检

    越来越多任务厂内布建自动装置系统及机械设备,透过连线整合,达到部分自动加工甚至全自动制造,以此有效提高作业效益、节省人力成本。而每种机台的配线方式不尽相同,如何确保人员线路配置的正确性以及建立可控管的系统,即是公共安全的重要环节之一。

  • 鸡蛋蛋壳品质检测分级解决方案

    运用所罗门SolVision AI影像平台的Instance Segmentation技术,定位、标注影像样本中鸡蛋蛋壳裂隙瑕疵位置并以训练AI模型,训练完成后即可透过AI检测蛋壳表面的孔隙及裂痕情形再予以分级,提升鸡蛋食用的安全性及商品价值。

  • 芯片收纳(In-Tray)跳料检测解决方案

    芯片于晶盘中跳料的情形系属随机,所致的瑕疵型态多样且难以预测瑕疵所产生的位置。运用SolVision AI影像平台技术,以具迭料、空料、歪斜错置、反转等瑕疵的影像样本训练AI模型,AI训练完成后即可轻易且迅速地辨识并标注晶盘上产生收纳异常的位置。

  • 封装晶片边缘微裂瑕疵检测解决方案

    由于晶粒边缘崩裂瑕疵出现的位置及型态不固定,以致传统光学检测无法精准地将瑕疵检出,影响整体产品良率。运用SolVision AI影像技术,将影像样本中的瑕疵特征予以标注,完成训练的AI模型即可自动检出并标注晶粒边缘崩裂瑕疵的位置,大幅降低芯片在后续封装制程中断裂的风险。

  • a group of square objects

    晶粒边缘崩裂检测解决方案

    由于晶粒边缘崩裂瑕疵出现的位置及型态不固定,以致传统光学检测无法精准地将瑕疵检出,影响整体产品良率。运用SolVision AI影像技术,将影像样本中的瑕疵特征予以标注,完成训练的AI模型即可自动检出并标注晶粒边缘崩裂瑕疵的位置,大幅降低芯片在后续封装制程中断裂的风险。

  • 晶圆切割刀体外观品质控管解决方案

    晶圆切割系半导体及光电业界非常重要的制程,若无法在切割制程中维持高良率、高效率并保有芯片特性,将大幅影响整体产能。晶圆切割刀的质量控管主要透过外观瑕疵的检测,常见的外观瑕疵包括刀体上的不规则纹路、多钻等情形。由于有环状条纹,形成复杂影像背景,严重影响机器视觉对于瑕疵的侦测。

  • 印刷电路板(PCB)元件组装检测解决方案

    印刷电路板(Printed Circuit Board, PCB)是电子装配中最重要的基底,但PCBA上的电子组件种类繁多,包括电阻、电容、晶体管等等。运用SolVision AI影像平台透过训练完成的AI模型,可实时地检出组件缺件或组装错误等异常情形及位置。