SolVision

  • All
  • AccuPick
  • JustPick
  • Uncategorized
  • 产业
  • 产品
  • 商品型录
  • 应用
  • 成功案例
  • 新闻与活动
  • 最新消息
    •   Back
    • SolVision
    • META-aivi
    • SolMotion
    •   Back
    • 航空航天业
    • 汽车业
    • 建造业
    • 电子业
    • 食品业
    • 物流业
    • 制造业
    • 金属加工业
    • 光电业
    • 石化业
    • 生技医疗业
    • 公用事业
    • 半导体产业
    • 智能制造业
    • 纺织业
    •   Back
    • 产品讯息
    • 展览活动
    • 奖项
咖啡胶囊摆放顺序出货前检验解决方案

咖啡胶囊不同口味代表不同颜色,以一盘咖啡胶囊作为标准组,另一盘咖啡胶囊作为对照组。使用SolVision学习各种咖啡胶囊的影像,若有任意一个咖啡胶囊的位置摆放错误,软件可立即将错误摆放之处以检测框标示出来,可成功分辨各式高反光且颜色差异小的咖啡胶囊。

钱币面额智能化计算解决方案

许多制币厂试图以视觉技术进行钱币的筛选,使用SolVision的Feature Detection工具,学习钱币在各种亮度、脏污与氧化程度的影像数据,不仅可分辨图案相同但面额不同的钱币,亦可正确辨识出各国钱币,并实时计算出各国钱币的总面额。

鸡蛋蛋壳品质检测分级解决方案

运用所罗门SolVision AI影像平台的Instance Segmentation技术,定位、标注影像样本中鸡蛋蛋壳裂隙瑕疵位置并以训练AI模型,训练完成后即可透过AI检测蛋壳表面的孔隙及裂痕情形再予以分级,提升鸡蛋食用的安全性及商品价值。

芯片收纳(In-Tray)跳料检测解决方案

芯片于晶盘中跳料的情形系属随机,所致的瑕疵型态多样且难以预测瑕疵所产生的位置。运用SolVision AI影像平台技术,以具迭料、空料、歪斜错置、反转等瑕疵的影像样本训练AI模型,AI训练完成后即可轻易且迅速地辨识并标注晶盘上产生收纳异常的位置。

封装晶片边缘微裂瑕疵检测解决方案

由于晶粒边缘崩裂瑕疵出现的位置及型态不固定,以致传统光学检测无法精准地将瑕疵检出,影响整体产品良率。运用SolVision AI影像技术,将影像样本中的瑕疵特征予以标注,完成训练的AI模型即可自动检出并标注晶粒边缘崩裂瑕疵的位置,大幅降低芯片在后续封装制程中断裂的风险。

晶粒边缘崩裂检测解决方案

由于晶粒边缘崩裂瑕疵出现的位置及型态不固定,以致传统光学检测无法精准地将瑕疵检出,影响整体产品良率。运用SolVision AI影像技术,将影像样本中的瑕疵特征予以标注,完成训练的AI模型即可自动检出并标注晶粒边缘崩裂瑕疵的位置,大幅降低芯片在后续封装制程中断裂的风险。

晶圆切割刀体外观品质控管解决方案

晶圆切割系半导体及光电业界非常重要的制程,若无法在切割制程中维持高良率、高效率并保有芯片特性,将大幅影响整体产能。晶圆切割刀的质量控管主要透过外观瑕疵的检测,常见的外观瑕疵包括刀体上的不规则纹路、多钻等情形。由于有环状条纹,形成复杂影像背景,严重影响机器视觉对于瑕疵的侦测。

Prev
123

欢迎留下任何问题,获取更多资讯

所罗门专家将尽快联系您,协助您解决机器视觉与工业自动化需求。