紡織業

  • a stack of textile spindles behind a yellow robot arm

    玻璃纖維線軸拆架

    透過使用SolScan和AccuPick 3D實現基於人工智能的機器人 3D 視覺,成功解決了準確識別機架中線軸位置的挑戰。集成到機械臂末端軸上的工業 3D 相機在此解決方案中發揮了關鍵作用。

  • 包裝密封檢測解決方案

    除了判斷包裝是否密封之外,須進一步確認密封不完全的型態與原因,但因為密封缺陷的型態差異小,且物件表面呈高反光,不論是人眼或AOI皆不易找出缺陷並將之分類。所羅門使用 SolVision工具,由影像定義出密封完好的狀態,並與多種缺陷作比較,可即時檢出沒有密封完整的包裝並將缺陷分類。

  • Multi Colored Plastic Round Toy

    紗線瑕疵檢測的最佳解決方案

    保有生產效益的同時兼顧紗線品質,是紡織業者最大挑戰。現今紗場依以人工檢測為主,漏檢率高且工時長,不利實際品質要求,傳統AOI面對不固定瑕疵時亦難以檢測,誤判率高。使用SolVision工具使AI學習辨識瑕疵特徵,快速且精準地找出各項缺陷,有效改善檢測速率、成品良率並降低品檢負擔。

  • 緞帶品質AI檢測解決方案

    緞帶色彩繽紛的特性使得AOI檢測容易因為花紋和顏色變化而發生瑕疵漏檢或誤判。使用SolVision檢測各種顏色、花紋的緞帶,能夠精確找出裂孔、脫絲等瑕疵的位置、大小及形狀,不論是檢測速度或是精準度都能達到標準。而透過記錄與分析瑕疵的樣態,可回溯找出製作過程中的問題所在,改善產品製程。

  • 襪品外觀缺陷檢測

    襪品瑕疵形態多樣,傳統AOI適合用於整塊布疋的檢測,對於不固定的瑕疵檢測有困難,且容易發生錯殺,仍需人工進行複檢。以SolVision工具完成AI模型的訓練。可快速且精確地找出瑕疵、分類不同瑕疵並剔除不良品,把關產品品質、提升生產效率,透過對瑕疵進行分類與分析,更能夠優化整體製程。

  • 塑膠扣具瑕疵檢測解決方案

    射出成型的扣具生產上最為常見的瑕疵為脫模劑油汙、白點、毛邊及殘屑,其中屬油汙瑕疵最難檢出。結合SolVision AI影像平台工具,分別針對各類表面瑕疵型態執行深度學習,訓練完成的AI模型即可即時檢出射出成型時產生油汙與在內的各類瑕疵。