分类识别

  • a group of square objects

    晶圆不良品分类及瑕疵定位自动化解决方案

    传统光学检测无法针对全幅影像进行分类,故无法于第一阶段汰除瑕疵过多的晶圆。应用SolVision AI影像平台技术辨识瑕疵特征。首先判断晶圆是否具有过多瑕疵,汰除无法修复的不良品。其次运用图像处理技术分割晶圆影像,并以工具侦测瑕疵,记录其特征、坐标、面积等信息,大幅提升后续修补的效率。

  • 组装电路板(PCBA)制程优化解决方案

    PCBA上面集成了不同功能的电子组件、插槽及各种芯片组,制造流程繁琐,如何提升PCBA插件及组装的正确率,是良率提升的关键。SolVision AI瑕疵检测系统,学习多张PCBA的影像做AI训练,可辨检测细微瑕疵,使PCBA制成优化,效率大幅提升。

  • AI影像辨识 – OCR电子元件字符

    电子组件制造过程追踪为半导体之产出基石,辨识组件编号被视为生产重要环节之一。但较差环境下让AOI辨识更加困难,对于提升产线效率以及降低字符的误判度有很大改善空间。利用SolVision技术执行光学字符识别,有别于传统AOI,不受底色、环境光线及字符种类多等限制,可精准识别个别编码。

  • various colored yarn bobbins

    纱线瑕疵检测的最佳解决方案

    保有生产效益的同时兼顾纱线质量,是纺织业者最大挑战。现今纱场依以人工检测为主,漏检率高且工时长,不利实际质量要求,传统AOI面对不固定瑕疵时亦难以检测,误判率高。使用SolVision工具使AI学习辨识瑕疵特征,快速且精准地找出各项缺陷,有效改善检测速率、成品良率并降低品检负担。

  • 50ml saline IV bag on blue background

    透明点滴袋打印标签辨识分类解决方案

    各式输液皆以透明点滴袋包装,点滴袋上都会清楚注明种类、浓度及容量信息。由于各式点滴袋体上打印卷标位置不一,在产线尚无法以一般光学检测取代人工进行品项分类。所罗门运用SolVision技术,针对点滴袋体上的名称、浓度、容量等影像信息训练AI学习影像特征,可以快速辨识并分类各式输液品项。

  • 3 pairs of ankle socks on a white background

    袜品外观缺陷检测

    袜品瑕疵形态多样,传统AOI适合用于整块布疋的检测,对于不固定的瑕疵检测有困难,且容易发生错杀,仍需人工进行复检。以SolVision工具完成AI模型的训练。可快速且精确地找出瑕疵、分类不同瑕疵并剔除不良品,把关产品质量、提升生产效率,透过对瑕疵进行分类与分析,更能够优化整体制程。

  • 金属外壳瑕疵检测与分类解决方案

    利用SolVision的瑕疵检测工具,做出AI模型Training,针对瑕疵的形状长相建立瑕疵缺陷数据库,将复杂的缺陷人工检测转化成精准度高且规律的检测系统,以深度学习辨识异常并忽略可接受的微小缺陷,有效提升检测精准度及速率,兼顾产品严格的质量要求。

  • a close-up of a machine

    自动化激光焊接分类暨检测解决方案

    雷射焊接具有不同的焊缝特征。由于产品的焊接位置、样式不尽相同,无法透过传统光学检测辨别焊缝样态,常造成焊接质量不一的情形。应用Solomon SolVision能够以焊缝特征影像训练AI模型,辨识焊接功率及漏焊瑕疵,并可透过深度学习,精准侦测焊缝的鱼鳞纹数量及分布。

  • 塑胶扣具瑕疵检测解决方案

    射出成型的扣具生产上最为常见的瑕疵为脱模剂油污、白点、毛边及残屑,其中属油污瑕疵最难检出。结合SolVision AI影像平台工具,分别针对各类表面瑕疵型态执行深度学习,训练完成的AI模型即可实时检出射出成型时产生油污与在内的各类瑕疵。