SolVision

  • Gray Round Metal Part

    电脑零组件瑕疵检测解决方案

    硬盘支架制造过程出现的瑕疵种类繁多,包括金属的压伤、表面白雾、孔批麟、孔黑等等,透过人工检测不容易逐一检出,然而微小的缺陷在组装过程可能造成孔隙无法对齐等问题发生。使用SolVision工具AI学习瑕疵特征后,能够快速检测出硬盘金属支架上的各类微小瑕疵。

  • a group of square objects

    晶圆不良品分类及瑕疵定位自动化解决方案

    传统光学检测无法针对全幅影像进行分类,故无法于第一阶段汰除瑕疵过多的晶圆。应用SolVision AI影像平台技术辨识瑕疵特征。首先判断晶圆是否具有过多瑕疵,汰除无法修复的不良品。其次运用图像处理技术分割晶圆影像,并以工具侦测瑕疵,记录其特征、坐标、面积等信息,大幅提升后续修补的效率。

  • 半导体晶片封装制程接着剂瑕疵检测解决方案

    固晶接着剂透明,易造成光源折射影响特征判断,且爬胶、溢胶不具固定位置及型态,无法创建规则执行传统光学检测AOI。运用Solomon SolVision AI影像平台技术建立AI学习模块,自动学习并侦测爬胶、溢胶的特征及位置。增加多项正确类别提升辨识强度,有效降低环境因素的干扰。

  • 快速辨识轮胎内胎印刷编码

    轮胎在制程的环节经历许多高压、高负荷与高温差的工序,使内胎表面字迹模糊且刷色深浅不齐,影响内胎编码的辨识度,不利于人工辨识与传统AOI检测。利用SolVision工具,针对轮胎内胎编码的数字与形状进行拍摄,进行AI模型训练,能成功辨识,有效改善编码辨识的正确率。

  • black and white labeled box

    自动化导线架品质检测

    导线架表面的各类瑕疵,包含边缘毛边、黑点杂质、刮痕等。若使用传统的AOI检测,当检测背景与瑕疵较为相近时,容易发生漏检的情形。使用SolVision AI瑕疵检测工具进行学习,以扩增功能增加AI学习范围,能有效检测出各类导线架瑕疵,在杂乱或复杂背景中,也能精确辨识有很好的辨识效果。

  • AI检测螺丝纹面瑕疵

    有螺纹的金属套件,容易因搬运造成工件碰撞受伤,或在加工过程中留下刀痕,即使搭配强光与显微设备,以人眼检测不易,容易发生误检与漏检。使用SolVisionl非监督式检测工具,可学习刀痕与碰撞瑕疵的特征,在AI训练完成后便可轻易检测出人眼不易辨识的瑕疵,挑出瑕疵对象,让出货质量更好。

  • 组装电路板(PCBA)制程优化解决方案

    PCBA上面集成了不同功能的电子组件、插槽及各种芯片组,制造流程繁琐,如何提升PCBA插件及组装的正确率,是良率提升的关键。SolVision AI瑕疵检测系统,学习多张PCBA的影像做AI训练,可辨检测细微瑕疵,使PCBA制成优化,效率大幅提升。

  • AI影像辨识 – OCR电子元件字符

    电子组件制造过程追踪为半导体之产出基石,辨识组件编号被视为生产重要环节之一。但较差环境下让AOI辨识更加困难,对于提升产线效率以及降低字符的误判度有很大改善空间。利用SolVision技术执行光学字符识别,有别于传统AOI,不受底色、环境光线及字符种类多等限制,可精准识别个别编码。

  • various colored yarn bobbins

    纱线瑕疵检测的最佳解决方案

    保有生产效益的同时兼顾纱线质量,是纺织业者最大挑战。现今纱场依以人工检测为主,漏检率高且工时长,不利实际质量要求,传统AOI面对不固定瑕疵时亦难以检测,误判率高。使用SolVision工具使AI学习辨识瑕疵特征,快速且精准地找出各项缺陷,有效改善检测速率、成品良率并降低品检负担。