SolVision

  • green bottle lot

    玻璃酒瓶霉斑脏污检测方案

    为落实环保,酒商皆启动玻璃瓶容器回收再利用的机制。但玻璃酒瓶内缘之霉斑脏污,即使经过清洗消毒仍然容易残留,人眼不易看出霉斑。SolVision以酒瓶影像训练AI,学习霉斑脏污的位置与颜色,自动辨识霉斑脏污特征,在清洗产在线快速找出有霉斑、脏污的酒瓶汰除,让回收再利用酒瓶维持质量。

  • 空调冷冻风管端点焊接品质管控方案

    空调及冷冻设备的制造过程中,热交换器的密闭容器所含的铁管、镜板、管帽、端板等部件皆需经过焊接工序,但由于焊接工厂属高温高热的场域,入内需穿着基本防护,且焊道的瑕疵缺陷复杂且不规则,凭借人工经验检测焊道,不容易维持质量一致,导入AI自动化检测势在必行。

  • 积层陶瓷电容制程优化解决方案

    SMD电容体积较小,观察缺陷需在显微镜等级的微观工具下观察,且因MLCC非常脆弱,检测过程也须非常小心,困难度极高。使用SolVision工具,学习电极上凸出部分的瑕疵形状及位置,建立AI模型,在AI学习瑕疵特征之后,即可快速检测电容凸出部分的缺陷,大幅提升整体制程的良率。

  • 50ml saline IV bag on blue background

    透明点滴袋打印标签辨识分类解决方案

    各式输液皆以透明点滴袋包装,点滴袋上都会清楚注明种类、浓度及容量信息。由于各式点滴袋体上打印卷标位置不一,在产线尚无法以一般光学检测取代人工进行品项分类。所罗门运用SolVision技术,针对点滴袋体上的名称、浓度、容量等影像信息训练AI学习影像特征,可以快速辨识并分类各式输液品项。

  • 透明瓶装液体沉淀物AI自动化检测解决方案

    液体生技药品常以透明瓶装保存,由于透明瓶装的反光特性、受测物沉淀情形不一因素,使瓶装药品的检测无法以一般光学检测取代人力执行。所罗门结合机器视觉与人工智能,运用SolVision AI从数据库中的影像特征判断沉淀情形。透过深度学习技术,可辨识7种不同的沉淀样态,进而判断内容物的质量。

  • 芯片承载盘检测解决方案

    芯片承载盘是半导体加工制程的关键要素,芯片承载盘的轮廓与定位孔点常因作业造成瑕疵,过去多透过AOI光学检测方式予以检查。然而承载盘不易透过AOI检出并定位瑕疵,严重影响良率及生产效率。运用SolVision AI影像技术执行缺陷检测,以利使用者实时监测并排除承载盘异常。

  • 缎带品质AI检测解决方案

    缎带色彩缤纷的特性使得AOI检测容易因为花纹和颜色变化而发生瑕疵漏检或误判。使用SolVision检测各种颜色、花纹的缎带,能够精确找出裂孔、脱丝等瑕疵的位置、大小及形状,不论是检测速度或是精准度都能达到标准。而透过记录与分析瑕疵的样态,可回溯找出制作过程中的问题所在,改善产品制程。

  • 3 pairs of ankle socks on a white background

    袜品外观缺陷检测

    袜品瑕疵形态多样,传统AOI适合用于整块布疋的检测,对于不固定的瑕疵检测有困难,且容易发生错杀,仍需人工进行复检。以SolVision工具完成AI模型的训练。可快速且精确地找出瑕疵、分类不同瑕疵并剔除不良品,把关产品质量、提升生产效率,透过对瑕疵进行分类与分析,更能够优化整体制程。

  • Intel product label OCR using AI inspection

    物料管理优化方案,提高产品标签辨识度

    电子产业中,如果料号标签无法辨识会大幅降低作业效率。卷标字体印刷不良卷标上的字体在印刷过程容易产生不规则的细微瑕疵,使得AOI难以辨识。利用SolVision进行缺陷以及字符辨识之AI深度学习,即便卷标字体出现不规则的缺陷仍能正确辨识,大幅降低物料管理的成本支出,提高库存管理正确性。