電子業

  • A Man Fixing a Laptop

    筆電組裝零件缺漏與瑕疵檢測

    筆電產品零件進入組合與包裝程序後,利用人工方式進行配套零件的裝配,在執行上下裝殼與垂直螺絲組裝等工序時,若有零件缺漏將直接影響最終產品品質,進入各通路販售後有損公司名譽。導入所羅門SolVision檢測提高產品良率及穩定性,能持續優化其檢測效力,有效提高產品的品質良率。

  • 組裝電路板 (PCBA) 製程優化解決方案

    PCBA上面集成了不同功能的電子元件、插槽及各種晶片組,製造流程繁瑣,如何提升PCBA插件及組裝的正確率,是良率提升的關鍵。SolVision AI瑕疵檢測系統,學習多張PCBA的影像做AI訓練,可辨檢測細微瑕疵,使PCBA製成優化,效率大幅提升。

  • AI影像辨識 – OCR電子元件字元

    電子元件製造過程追蹤為半導體之產出基石,辨識元件編號被視為生產重要環節之一。但較差環境下讓AOI辨識更加困難,對於提升產線效率以及降低字元的誤判度有很大改善空間。利用SolVision技術執行光學字元辨識,有別於傳統AOI,不受底色、環境光線及字元種類多等限制,可精準識別個別編碼。

  • 積層陶瓷電容製程優化解決方案

    SMD電容體積較小,觀察缺陷需在顯微鏡等級的微觀工具下觀察,且因MLCC非常脆弱,檢測過程也須非常小心,困難度極高。使用SolVision工具,學習電極上凸出部分的瑕疵形狀及位置,建立AI模型,在AI學習瑕疵特徵之後,即可快速檢測電容凸出部分的缺陷,大幅提升整體製程的良率。

  • Intel product label OCR using AI inspection

    物料管理優化方案,提高產品標籤辨識度

    電子產業中,如果料號標籤無法辨識會大幅降低作業效率。標籤字體印刷不良標籤上的字體在印刷過程容易產生不規則的細微瑕疵,使得AOI難以辨識。利用SolVision進行缺陷以及字元辨識之AI深度學習,即便標籤字體出現不規則的缺陷仍能正確辨識,大幅降低物料管理的成本支出,提高庫存管理正確性。

  • 金屬外殼瑕疵檢測與分類解決方案

    利用SolVision的瑕疵檢測工具,做出AI模型Training,針對瑕疵的形狀長相建立瑕疵缺陷資料庫,將複雜的缺陷人工檢測轉化成精準度高且規律的檢測系統,以深度學習辨識異常並忽略可接受的微小缺陷,有效提升檢測精準度及速率,兼顧產品嚴格的品質要求。

  • SMT製程的回焊短路檢測解決方案

    SMT製程回焊過程中,過多錫膏量或是印刷偏移可能導致錫球間短路,過去以人工方式檢測,效率不彰。SMT多餘錫膏在高溫下的流動型態無法預測,難以傳統AOI檢出。運用SolVision AI技術,將SMT製程影像樣本中的回焊短路瑕疵定位並標註,訓練AI模型。可輕易檢出錫球間短路情形。

  • BGA Soldering Inspection Using SolVision

    球柵陣列封裝假銲瑕疵檢測解決方案

    運用SolVision AI影像平台的Instance Segmentation技術,將X光影像中錫球重疊的假銲瑕疵予以標註並藉以執行AI模型的深度學習。經訓練後的AI即可在具背景雜訊、無明顯影像邊緣的條件下,將假銲瑕疵精準檢出。