金屬加工業

  • set of steel wrenches and spanners on a blue background

    扳手瑕疵檢測

    以AI視覺技術檢測活動扳手外觀是否存在瑕疵,進一步提升產品品質。

  • a mechanic's hand wearing gloves installing the right crank arm on the bottom bracket with a workshop background

    使用 AR + AI 計算自行車車架管數

    META-aivi 的 AR + AI 解決方案提高自行車車架生產的管材計數準確性和效率,減少錯誤並提升生產力。

  • 使用視覺引導機器人研磨金屬零件

    利用 SolMotion 的 3D 匹配技術自動進行精確磨削。提高金屬部件製造的品質、減少浪費並提高生產率。

  • metal rails stacked in a railway yard

    利用機器人實現自動化鐵軌接縫板去毛邊處理

    使用了SOLMON公司的AI 3D機器視覺技術Solmotion來進行接縫板的位置識別。準確地識別接縫板端面進行毛邊修整的位置並進行了修正。在毛邊修整過程中,我們在接縫板流動到修整位置之前的一側安裝了Solmotion的攝像頭系統,用於解析接縫板的截面。

  • unpolished metal workpieces in a bin

    挑選未經拋光的金屬加工物件進行 CNC 加工

    由於青銅零件小而重,再加上隨機擺放於料箱中,視覺系統難以精準辨識物件,導致機械手臂夾取出現異常。搭配AI、3D技術,能定位和生成3D拾取點,實現精準取放效果。

  • high quality Galvanized steel pipe or Aluminum and chrome stainless pipes in stack waiting for shipment in warehouse

    META-aivi 智能快速計數

    運用META-aivi的快速計數功能,針對尺寸不同的料件進行AI模型訓練,META-aivi即可快速辨認與計算數量,所得出的結果可立即顯示在行動裝置上。同時,計算出的結果可與MES系統連接,減少人員盤點錯誤的發生,大幅增加入庫資料正確性,提升庫存管控效率。

  • Automated classification of coins using AI

    各國硬幣面額智能化辨識及計算解決方案

    許多製幣廠試圖以視覺技術進行錢幣的篩選,使用SolVision的Feature Detection工具,學習錢幣在各種亮度、髒汙與氧化程度的影像資料,不僅可分辨圖案相同但面額不同的錢幣,亦可正確辨識出各國錢幣,並即時計算出各國錢幣的總面額。

  • 不鏽鋼管字元辨識解決方案

    目前仍採用人力進行自行車車身號碼的辨識與登錄,耗費人工且效率低,若使用AOI進行字元辨識,因不鏽鋼管表面為圓弧曲面,打光容易造成反射,不論以人工或者AOI檢測,針對曲面、反光不鏽鋼管上字樣的辨識皆較為困難。所羅門結合機器視覺與人工智慧,對於光學字元辨識可以得到極佳的辨識效果。

  • 高爾夫球桿頭品質檢測解決方案

    高爾夫球桿頭是球具組合中最重要的部份,消費者十分重視桿頭完成面的細緻程度。運用SolVision AI影像技術,將影像樣本中高爾夫球桿頭上的細微瑕疵逐一標註,藉以訓練AI模型,訓練完成後的AI模型即能不受商標、紋路及金屬光澤的影響,定位並標註所有細微的表面瑕疵。