成功案例

  • AI影像辨識 – OCR電子元件字元

    電子元件製造過程追蹤為半導體之產出基石,辨識元件編號被視為生產重要環節之一。但較差環境下讓AOI辨識更加困難,對於提升產線效率以及降低字元的誤判度有很大改善空間。利用SolVision技術執行光學字元辨識,有別於傳統AOI,不受底色、環境光線及字元種類多等限制,可精準識別個別編碼。

  • various colored yarn bobbins

    紗線瑕疵檢測的最佳解決方案

    保有生產效益的同時兼顧紗線品質,是紡織業者最大挑戰。現今紗場依以人工檢測為主,漏檢率高且工時長,不利實際品質要求,傳統AOI面對不固定瑕疵時亦難以檢測,誤判率高。使用SolVision工具使AI學習辨識瑕疵特徵,快速且精準地找出各項缺陷,有效改善檢測速率、成品良率並降低品檢負擔。

  • green bottle lot

    玻璃酒瓶黴斑髒汙檢測方案

    為落實環保,酒商皆啟動玻璃瓶容器回收再利用的機制。但玻璃酒瓶內緣之黴斑髒汙,即使經過清洗消毒仍然容易殘留,人眼不易看出黴斑。SolVision以酒瓶影像訓練AI,學習黴斑髒污的位置與顏色,自動辨識黴斑髒污特徵,在清洗產線上快速找出有黴斑、髒污的酒瓶汰除,讓回收再利用酒瓶維持品質。

  • 空調冷凍風管端點銲接品質管控方案

    空調及冷凍設備的製造過程中,熱交換器的密閉容器所含的鐵管、鏡板、管帽、端板等部件皆需經過銲接工序,但由於銲接工廠屬高溫高熱的場域,入內需穿著基本防護,且銲道的瑕疵缺陷複雜且不規則,憑藉人工經驗檢測銲道,不容易維持品質一致,導入AI自動化檢測勢在必行。

  • 積層陶瓷電容製程優化解決方案

    SMD電容體積較小,觀察缺陷需在顯微鏡等級的微觀工具下觀察,且因MLCC非常脆弱,檢測過程也須非常小心,困難度極高。使用SolVision工具,學習電極上凸出部分的瑕疵形狀及位置,建立AI模型,在AI學習瑕疵特徵之後,即可快速檢測電容凸出部分的缺陷,大幅提升整體製程的良率。

  • 50ml saline IV bag on blue background

    透明點滴袋打印標籤辨識分類解決方案

    各式輸液皆以透明點滴袋包裝,點滴袋上都會清楚註明種類、濃度及容量資訊。由於各式點滴袋體上打印標籤位置不一,在產線尚無法以一般光學檢測取代人工進行品項分類。所羅門運用SolVision技術,針對點滴袋體上的名稱、濃度、容量等影像資訊訓練AI學習影像特徵,可以快速辨識並分類各式輸液品項。

  • 透明瓶裝液體沉澱物AI自動化檢測解決方案

    液體生技藥品常以透明瓶裝保存,由於透明瓶裝的反光特性、受測物沉澱情形不一因素,使瓶裝藥品的檢測無法以一般光學檢測取代人力執行。所羅門結合機器視覺與人工智慧,運用SolVision AI從資料庫中的影像特徵判斷沉澱情形。透過深度學習技術,可辨識7種不同的沉澱樣態,進而判斷內容物的品質。

  • 晶片承載盤檢測解決方案

    晶片承載盤是半導體加工製程的關鍵要素,晶片承載盤的輪廓與定位孔點常因作業造成瑕疵,過去多透過AOI光學檢測方式予以檢查。然而承載盤不易透過AOI檢出並定位瑕疵,嚴重影響良率及生產效率。運用SolVision AI影像技術執行缺陷檢測,以利使用者即時監測並排除承載盤異常。

  • 緞帶品質AI檢測解決方案

    緞帶色彩繽紛的特性使得AOI檢測容易因為花紋和顏色變化而發生瑕疵漏檢或誤判。使用SolVision檢測各種顏色、花紋的緞帶,能夠精確找出裂孔、脫絲等瑕疵的位置、大小及形狀,不論是檢測速度或是精準度都能達到標準。而透過記錄與分析瑕疵的樣態,可回溯找出製作過程中的問題所在,改善產品製程。