应用

  • 传统机台仪表数字化解决方案

    传统式的气体监控机台或仪器设备具有仪表板显示信息,惟其缺乏数字化接口,SolVision结合机器视觉与人工智能,运用AI影像平台技术执行光学字符识别(OCR),将机台仪表影像中的数值转为数字化信息,以利统计、监控数据的异常情形,亦可进 % 一步作为后续智能化相关应用的基础。

  • a close-up of a machine

    自动化激光焊接分类暨检测解决方案

    雷射焊接具有不同的焊缝特征。由于产品的焊接位置、样式不尽相同,无法透过传统光学检测辨别焊缝样态,常造成焊接质量不一的情形。应用Solomon SolVision能够以焊缝特征影像训练AI模型,辨识焊接功率及漏焊瑕疵,并可透过深度学习,精准侦测焊缝的鱼鳞纹数量及分布。

  • 商品外包装印刷瑕疵检测解决方案

    做为商品外包装材料,软质的铝箔袋常在印刷过程中产生印刷错误、歪斜、脱落及漏印等情形。统光学检测和人工的方式出错率高。运用SolVision的Anomaly Detection工具,训练完成的模型即可针对印刷文字、图案上的形状、颜色等特征差异执行比对,侦测并标注瑕疵所在位置。

  • SMT制程的回焊短路检测解决方案

    SMT制程回焊过程中,过多锡膏量或是印刷偏移可能导致锡球间短路,过去以人工方式检测,效率不彰。SMT多余锡膏在高温下的流动型态无法预测,难以传统AOI检出。运用SolVision AI技术,将SMT制程影像样本中的回焊短路瑕疵定位并标注,训练AI模型。可轻易检出锡球间短路情形。

  • 塑胶扣具瑕疵检测解决方案

    射出成型的扣具生产上最为常见的瑕疵为脱模剂油污、白点、毛边及残屑,其中属油污瑕疵最难检出。结合SolVision AI影像平台工具,分别针对各类表面瑕疵型态执行深度学习,训练完成的AI模型即可实时检出射出成型时产生油污与在内的各类瑕疵。

  • BGA Soldering Inspection Using SolVision

    球柵阵列封装假焊瑕疵检测解决方案

    运用SolVision AI影像平台的Instance 实例切割技术,将X光影像中锡球重迭的假焊瑕疵予以标注并藉以执行AI模型的深度学习。经训练后的AI即可在具背景噪声、无明显影像边缘的条件下,将假焊瑕疵精准检出。

  • 饮品包装印刷讯息品质检测及溯源讯息存留解决方案

    运用SolVision AI影像平台的Instance 实例切割技术,以包装良品及具各种瑕疵类型的影像样本训练AI模型。训练完成的模型可实时且迅速地辨识每一反光或透明泡壳的包装及填充情形,并将侦测到的瑕疵予以标注并分类。