成功案例

  • 不锈钢管字符辨识解决方案

    目前仍采用人力进行自行车车身号码的辨识与登录,耗费人工且效率低,若使用AOI进行字符辨识,因不锈钢管表面为圆弧曲面,打光容易造成反射,不论以人工或者AOI检测,针对曲面、反光不锈钢管上字样的辨识皆较为困难。所罗门结合机器视觉与人工智能,对于光学字符识别可以得到极佳的辨识效果。

  • 医疗口罩制造品质管控解决方案

    口罩产品瑕疵种类繁多,包括掉线、皱褶、鼻垫片缺漏及穿透、破洞、角切、脏污、侧边凸出及过滤层破损等。难以透过AOI方式检出全部的瑕疵。运用SolVision AI影像技术,将影像样本中各类型瑕疵予以标注,AI经深度学习后即可于品管端精准辨识口罩上是否有瑕疵,进而将不良品汰除。

  • 压花石膏板瑕疵检测解决方案

    石膏板出厂前,瑕疵情形皆须确实检出。然而,由于压花石膏板的外观特性,瑕疵在复杂背景中模糊,无法以AOI及人眼确实辨识。使用所罗门 SolVision AI影像平台技术,撷取板材上的脏痕、过大压花图案以及压花不清等瑕疵,可确实检出并定位板材上的瑕疵,具体提升石膏板板材的质量与良率。

  • 高尔夫球杆头品质检测解决方案

    高尔夫球杆头是球具组合中最重要的部份,消费者十分重视杆头完成面的细致程度。运用SolVision AI影像技术,将影像样本中高尔夫球杆头上的细微瑕疵逐一标注,藉以训练AI模型,训练完成后的AI模型即能不受商标、纹路及金属光泽的影响,定位并标注所有细微的表面瑕疵。

  • a close up of a blue and yellow background

    LED基板分区外观品质控管解决方案

    常见的LED基板瑕疵包括边缘毛边、焊垫氧化杂质、刮痕等,在瑕疵特征与背景相近的情况下,AOI检测不易将瑕疵检出。运用SolVision AI影像技术,以各式LED基板上瑕疵影像样本训练,经深度学习的AI即可精准地将瑕疵检出并标注。此外亦可指认瑕疵生成的所属区域,达到分区检测的目的。

  • black and white labeled box

    晶圆研磨瑕疵检测解决方案

    化学机械平坦化(CMP)是半导体制造中不可或缺的制程之一,然而,研磨液中过大颗粒及微粒凝聚体可能造成晶圆上的微划痕,是CMP制程中最主要的瑕疵类型。传统AOI检测即使耗费大量人力撰写算法,仍无法精准侦测整张晶圆影像瑕疵。运用所罗门SolVision解决方案来精准找到研磨瑕疵

  • 安规认证标章印刷瑕疵检测

    国内外安规认证的标章众多,例如CE、EAC等,各有不同的标章图示。过多的版面信息在大量印刷过程中不易检出多印或漏印的情形,可能影响商品的贩卖及使用。应用SolVision AI影像工具,训练AI模型。训练完成的AI模型即会自动检出并标示所有差异地方,即为版面的印刷瑕疵。

  • Close-up Photography of a Power Tool

    金属加工冲压件表面瑕疵检测解决方案

    金属加工冲压件上可能出现的瑕疵种类繁多且形态不一,油污及水渍更是不易观察。另一方面,金属加工件在取像时的亮度也各有差异,造成AOI瑕疵检测的执行相当不易。金属加工品的品管助手:AI瑕疵检测,经训练的AI模型可轻易检出各式冲压件上的瑕疵,大幅提升产品的表面质量。

  • Central Processor Of A Computer

    半导体晶片封装制程,高精度固晶检测解决方案

    固晶是芯片封装制程中的重要技术,固晶的精准与否,是半导体封装产线中产品良率的成败关键。但是传统光学检测无法利用撰写逻辑的方式检测角度、位移偏差及缺漏等瑕疵,经常造成漏检、误判、错误定位等问题,大大影响封装产线的生产效率。