
晶片於晶盤中跳料的情形係屬隨機,所致的瑕疵型態多樣且難以預測瑕疵所產生的位置。運用Solvision AI影像平台技術,以具疊料、空料、歪斜錯置、反轉等瑕疵的影像樣本訓練AI模型,AI訓練完成後即可輕...
晶片於晶盤中跳料的情形係屬隨機,所致的瑕疵型態多樣且難以預測瑕疵所產生的位置。運用Solvision AI影像平台技術,以具疊料、空料、歪斜錯置、反轉等瑕疵的影像樣本訓練AI模型,AI訓練完成後即可輕...
由於晶粒邊緣崩裂瑕疵出現的位置及型態不固定,以致傳統光學檢測無法精準地將瑕疵檢出,影響整體產品良率。運用Solvision AI影像技術,將影像樣本中的瑕疵特徵予以標註,完成訓練的AI模型即可自動檢出...
由於晶粒邊緣崩裂瑕疵出現的位置及型態不固定,以致傳統光學檢測無法精準地將瑕疵檢出,影響整體產品良率。運用Solvision AI影像技術,將影像樣本中的瑕疵特徵予以標註,完成訓練的AI模型即可自動檢出...
晶圓切割係半導體及光電業界非常重要的製程,若無法在切割製程中維持高良率、高效率並保有晶片特性,將大幅影響整體產能。晶圓切割刀的品質控管主要透過外觀瑕疵的檢測,常見的外觀瑕疵包括刀體上的不規則紋路、多鑽...
化學機械平坦化(CMP)是半導體製造中不可或缺的製程之一,然而,研磨液中過大顆粒及微粒凝聚體可能造成晶圓上的微劃痕,是CMP製程中最主要的瑕疵類型。傳統AOI檢測即使耗費大量人力撰寫演算法,仍無法精準...
固晶是晶片封裝製程中的重要技術,固晶的精準與否,是半導體封裝產線中產品良率的成敗關鍵。但是傳統光學檢測無法利用撰寫邏輯的方式偵測角度、位移偏差及缺漏等瑕疵,時常造成漏檢、誤判、錯誤定位等缺失,大大影響...
傳統光學檢測無法針對全幅影像進行分類,故無法於第一階段汰除瑕疵過多的晶圓。應用Solvision AI影像平台技術辨識瑕疵特徵。首先判斷晶圓是否具有過多瑕疵,汰除無法修復的不良品。其次運用影像處理技術...
固晶接著劑透明,易造成光源折射影響特徵判斷,且爬膠、溢膠不具固定位置及型態,無法創建規則執行傳統光學檢測AOI。運用Solomon Solvision AI影像平台技術建立AI學習模組,自動學習並偵測...
導線架表面的各類瑕疵,包含邊緣毛邊、黑點雜質、刮痕等。若使用傳統的AOI檢測,當檢測背景與瑕疵較為相近時,容易發生漏檢的情形。使用Solvision AI瑕疵檢測工具進行學習,以擴增功能增加AI學習範...
晶片承載盤是半導體加工製程的關鍵要素,晶片承載盤的輪廓與定位孔點常因作業造成瑕疵,過去多透過AOI光學檢測方式予以檢查。然而承載盤不易透過AOI檢出並定位瑕疵,嚴重影響良率及生產效率。運用Solvis...
© Copyright – 2023 SOLOMON TECHNOLOGY CORPORATION All Rights Reserved.
Privacy Policy|Terms and Conditions |Limited Warranty Statement