成功案例

  • 芯片收纳(In-Tray)跳料检测解决方案

    芯片于晶盘中跳料的情形系属随机,所致的瑕疵型态多样且难以预测瑕疵所产生的位置。运用SolVision AI影像平台技术,以具迭料、空料、歪斜错置、反转等瑕疵的影像样本训练AI模型,AI训练完成后即可轻易且迅速地辨识并标注晶盘上产生收纳异常的位置。

  • 封装晶片边缘微裂瑕疵检测解决方案

    由于晶粒边缘崩裂瑕疵出现的位置及型态不固定,以致传统光学检测无法精准地将瑕疵检出,影响整体产品良率。运用SolVision AI影像技术,将影像样本中的瑕疵特征予以标注,完成训练的AI模型即可自动检出并标注晶粒边缘崩裂瑕疵的位置,大幅降低芯片在后续封装制程中断裂的风险。

  • a group of square objects

    晶粒边缘崩裂检测解决方案

    由于晶粒边缘崩裂瑕疵出现的位置及型态不固定,以致传统光学检测无法精准地将瑕疵检出,影响整体产品良率。运用SolVision AI影像技术,将影像样本中的瑕疵特征予以标注,完成训练的AI模型即可自动检出并标注晶粒边缘崩裂瑕疵的位置,大幅降低芯片在后续封装制程中断裂的风险。

  • 晶圆切割刀体外观品质控管解决方案

    晶圆切割系半导体及光电业界非常重要的制程,若无法在切割制程中维持高良率、高效率并保有芯片特性,将大幅影响整体产能。晶圆切割刀的质量控管主要透过外观瑕疵的检测,常见的外观瑕疵包括刀体上的不规则纹路、多钻等情形。由于有环状条纹,形成复杂影像背景,严重影响机器视觉对于瑕疵的侦测。

  • 细胞病变辨识及分类解决方案

    切片显微影像中细胞的外观不固定,细胞病变发生的位置、型态也十分随机,导致每位医师对于癌细胞的判断及圈选标准不尽一致,更无法透过传统光学检测以撰写逻辑方式判断癌细胞的型态。数据扩增结合AI深度学习技术可以更快速准确地判读细胞特征!

  • 印刷电路板(PCB)元件组装检测解决方案

    印刷电路板(Printed Circuit Board, PCB)是电子装配中最重要的基底,但PCBA上的电子组件种类繁多,包括电阻、电容、晶体管等等。运用SolVision AI影像平台透过训练完成的AI模型,可实时地检出组件缺件或组装错误等异常情形及位置。

  • 渐层玻璃瓶瑕疵检测

    渐层玻璃瓶皆经过喷砂制程雾面处理,制作过程常见的瑕疵类型为色泽不均或者瓶身出现黑点,而这些瑕疵因无法明确定义且样式不固定,难以采用AOI方法进行检测。训练完成的AI模型即可快速检出玻璃瓶身各角度之瑕疵分布,并标注出缺陷位置。

  • LED PCBA瑕疵检测解决方案

    运用SolVision AI影像平台技术,在影像样本中定位并标注铝基板上的刮痕、脏污等异常及瑕疵情形,透过AI深度学习,即可自动且实时地检出并定位铝基板上的各式瑕疵,大幅提升产线生产效率。

  • 包装密封检测解决方案

    除了判断包装是否密封之外,须进一步确认密封不完全的型态与原因,但因为密封缺陷的型态差异小,且对象表面呈高反光,不论是人眼或AOI皆不易找出缺陷并将之分类。所罗门使用 SolVision工具,由影像定义出密封完好的状态,并与多种缺陷作比较,可实时检出没有密封完整的包装并将缺陷分类。